
Collaboration Organization, Work Accomplished, Goals, and Funding

> John Marriner April 26, 2010 21 cm Internal Review

21 cm Organization

21 cm BAO Collaboration

Al Ahkawayn University باعقال خويب H. Darhmaoui

University British Columbia K. Sigurdson

Carnegie-Mellon University J. Peterson

CEA (Saclay) C. Yeche, J-M Le Goff, J. Rich, C. Magneville

- D. McGinnis, S. Dodelson,
- N. Gneddin, J. Marriner,
 - V. Scarpine, H. Seo,
- A. Stebbins, A. Vallinotto

University of Toronto U. Pen

IN2P3 (Orsay) R. Ansari, M. Moniez

University of Wisconsin P. Timbie

4/26/10

21 cm Organization

BAO21cm Mailing List

Reza Ansari ansari@LAL.IN2P3.FR Aria Meyhoefer aria@FNAL.GOV Alberto Vallinotto avalli@FNAL.GOV Bruce McWilliams BMcWilliams@TESSERA.COM No Name Available breton@LAL.IN2P3.FR Bruce Taylor bruce.tayloriv@GMAIL.COM Richard Carrigan carrigan@FNAL.GOV Christophe Magneville christophe.magneville@CEA.FR Craig Hogan cjhogan@FNAL.GOV Scott Dodelson dodelson@FNAL.GOV Duane Doles dtdoles@FNAL.GOV Fritz Dejongh fritzd@FNAL.GOV Nick Gnedin gnedin@FNAL.GOV Hassane Darhmaoui H.Darhmaoui@AUI.MA Jeff Peterson jbp@CMU.EDU Jeffrey Peterson jeffreyb.peterson@GMAIL.COM Jean-Marc Le Goff jmlegoff@CEA.FR John Bunston John.Bunton@CSIRO.AU Jason Steffen jsteffen@FNAL.GOV No Name Available K.Loudivi@AUI.MA Kevin Bandura kbandura@ANDREW.CMU.EDU Kermit Carlson kermit@FNAL.GOV

Kris Sigurdson krs@PHYSICS.UBC.CA Ahmed Legrouri legrouri@AUI.MA John Marriner marriner@FNAL.GOV David McGinnis mcginnis@FNAL.GOV Marc Moniez moniez@LAL.IN2P3.FR Nathalie Palanque-Delabrouille nathalie@HEP.SACLAY.CEA.FR Ralph Pasquinelli pasquin@FNAL.GOV Patrice Micolon patrice.micolon@CEA.FR Patrick Ponsot patrick.ponsot@CEA.FR Ue-Li Pen pen@CITA.UTORONTO.CA Peter Timbie pttimbie@WISC.EDU Jim Rich rich@CEA.FR Roy Dapnia Alexksan roy.aleksan@CEA.FR Vanina Ruhlmann ruhlmann@CCIMAP.IN2P3.FR Sandrine Cazaux sandrine.cazaux@CEA.FR Vic Scarpine scarpine@FNAL.GOV Hee-Jong Seo sheejong@FNAL.GOV Albert Stebbins stebbins@FNAL.GOV Chris Stoughtonstoughto@FNAL.GOV Uros Seljak useljak@BERKELEY.EDU Christophe Yeche yeche@HEP.SACLAY.CEA.FR

Goal of the Collaboration

 To create a comprehensive, well thought-out conceptual design report.

To pursue opportunities for funding

- Private sources
- Generation Foreign sources

Traditional government sources

- ≻NSF
- >DOE

>French national & European sources

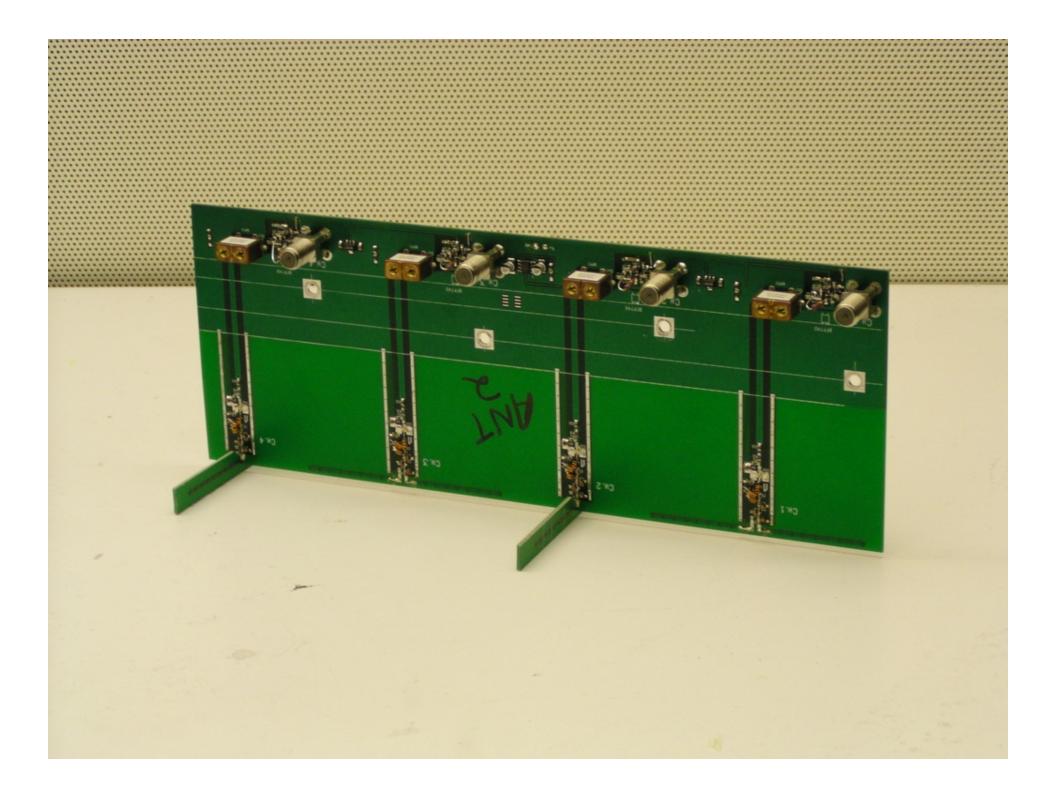
 Scheduled monthly video conferences (2nd Thursday of each month)

- Irregularly scheduled meetings on specific topics (irregular but ~bi-weekly)
- Annual collaboration meetings
 - Germilab (2008)
 - Al Akawayn (2009)
- Workshop on radio telescopes (FNAL 2009)

Fermilab 21cm Document Database

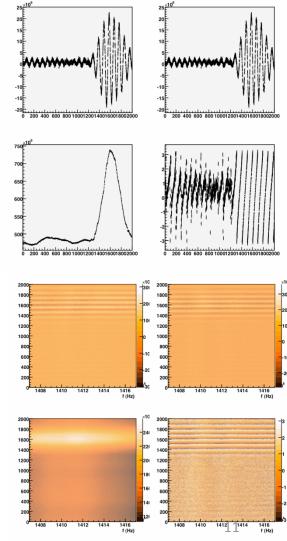
Projects-doc-#	Title			Author(s)	Topic(s)	Last Updated				
<u>784-v3</u>	Initial Pittsburgh Cylinder Simulations results		D	avid McGinnis	21CM	02 Dec 2009				
<u>778-v1</u>	Formulation Cylinder Visibilities		D.	<u>avid McGinnis</u>	<u>21CM</u>	05 Nov 2009				
<u>473-v4</u>	General Requirement Formulae for the 21cm Cylind	rical Radio Telesco	ope Da	<u>avid McGinnis</u>	Technical Notes	20 Oct 2009				
<u>653-v2</u>	<u>Signal to Noise for an FFT Antenna array</u>		D	avid McGinnis	Technical Notes	12 Oct 2009				
<u>713-v1</u>	Fermilab Presentations at the Spet 9, 2009 21cm c	ollaboration meetii	ing Jo	<u>hn Marriner</u> et al.	<u>21CM</u>	10 Sep 2009				
<u>670-v1</u>	Pine Bluff Observatory RFI Measurements		D.	<u>avid McGinnis</u>	<u>21CM</u>	10 Aug 2009				
<u>656-v1</u>	21cm Calibration by Ue-Li Pen				<u>21CM</u>	23 Jul 2009				
<u>626-v1</u>	Morocco Site Testing for the Cylinder Radio Telesco	<u>pe</u>			<u>21CM</u>	09 Jul 2009				
<u>566-v1</u>	Positioning and orienting a static radio-reflector				<u>21CM</u>	30 Jun 2009				
<u>562-v1</u>	21cm Collaboration Meeting June 2009 in Ifrane Mo	procco			<u>21CM</u>	26 Jun 2009				
<u>284-v1</u>	Rates and Resolutions		Cl	nris Stoughton	Technical Notes	22 Jun 2009				
476-v3	Martin Leung Thesis: A Wideband Feed For a Cylind	drical Radio Telesco	<u>cope</u> <u></u>		Technical Notes	27 May 2009				
<u>543-v1</u>	Dave's 21cm Five Magic Numbers		<u>D</u> ,	avid McGinnis	<u>21CM</u>	08 May 2009				
542-v1	<u>Measuring BAO with the 21cm line of Hydrogen</u>	467-v1	Status of	Aperture Feed Si	mùlatìons for the 2	21 cm CRT 2000		David McGinnis	Meeting Minutes	31 M
<u>475-v1</u>	April 9 2009 21cm CRT Collaboration Meeting			ocuments into th				David McGinnis	Technical Notes	02 M
<u>474-v1</u>	Comments on the Performance of a Adjacent Fee	450-v1	The Cylin	ider Radio Telesco	pe			John Marriner	Technical Notes	24 Fe
<u>169-v2</u>	Integration Time for 21cm Parabolic Cylinder Rad		21 cm Te	lescope Simulatic	 n			John Marriner et al.	Technical Notes	24 Fe
<u>471-v1</u>	Phased Array Antenna		Spherical	Coordinates for a	 a Parabolic Cvlinde	r Antenna		David McGinnis	Technical Notes	02 Fe
<u>467-v1</u>	Status of Aperture Feed Simulations for the 21cm		Fermilab	Morocco Site Visil	t Summarv			David McGinnis	Technical Notes	02 Fe
144-v4	Putting Documents into the 21 cm DocDb		Antenna	Factor for the 21	cm Simulation			David McGinnis	Technical Notes	26 Ja
<u>450-v1</u>	The Cylinder Radio Telescope				e Evaluation Statu	S		David McGinnis	Meeting Minutes	22 D
449-v <u>1</u>	21 cm Telescope Simulation								<u>Technical Notes</u>	
<u>366-v2</u>	Spherical Coordinates for a Parabolic Cylinder Ant	<u>373-v2</u>	21cm Me	<u>eting at Universit</u>	<u>y of Chicago</u>			<u>John Marriner</u> et al.	Meeting Minutes	22 O
<u>132-v7</u>	Fermilab Morocco Site Visit Summary	<u>372-v1</u>	21cm Cyl	inder Cartoon Pict	<u>tures</u>			<u>David McGinnis</u>	<u>Technical Notes</u>	01 O
<u>135-v1</u>	Antenna Factor for the 21 cm Simulation	<u>367-v1</u>	Ray Traci	<u>ng for an Offset F</u>	Focus Parabolic Cyl	inder Antenna		<u>David McGinnis</u>	<u>Technical Notes</u>	22 Se
07-v1	Fermilab 21cm Morocco Site Evaluation Status	<u>320-v1</u>	HSHS Pov	<u>wer Spectra</u>				<u></u>	<u>Technical Notes</u>	30 Ju
		<u>311-v2</u>	Initial Me	easurements of Ra	adio Frequency Inte	<u>erference at 1 GHz at f</u>	<u>Fermilab</u>	<u>David McGinnis</u>	<u>Technical Notes</u>	02 Ju
		<u>310-v1</u>	Average I	<u>Noise Power for a</u>	Low Noise Amplifi	<u>er</u>		<u>David McGinnis</u>	<u>Technical Notes</u>	02 Ju
		<u>282-v1</u>	Directivit	<u>y of a Parabolic C</u>	<u>ylinder Antenna</u>			<u>David McGinnis</u>	Technical Notes	05 Ma
		<u>290-v5</u>	<u>Integrati</u>	on Length for 21a	<u>m</u>			<u>David McGinnis</u>	Technical Notes	05 Ma
		<u>303-v1</u>	<u>Integrati</u>	on Time for a Para	abolic Dish Radio T	elescope		<u>David McGinnis</u>	Technical Notes	05 Ma
		<u>297-v1</u>	Radiomet	ter Equation				<u>John Marriner</u>	Technical Notes	01 A
		<u>292-v1</u>	3-D Inter	nsity Mapper Proje	ect Description			<u></u>	<u>Technical Notes</u>	11 M
		<u>291-v1</u>	NSF ATI F	<u> Proposal (2007)</u>				<u></u>	<u>Technical Notes</u>	10 M
			21 CENTI	METER FLUCTUAT	IONS FROM COSM	IC GAS AT HIGH REDSI	HIFTS	<u></u>	Publications	03 M
				BLE SPHERE HYDP				<u></u>	Publications	03 M
		<u>283-v1</u>	Digitized	response function	n of a phased array	<u>/ of Antennae</u>		<u>John Marriner</u>	Technical Notes	03 M
		<u>281-v1</u>	<u>21-cm Ba</u>	aryon Acoustic Oso	cillation Survey			Scott Dodelson	Technical Notes	03 M
	6/10	280-v1	2 D Intor	sity Mapper Proje	at Deperturbien				Technical Notes	03_Ma

References

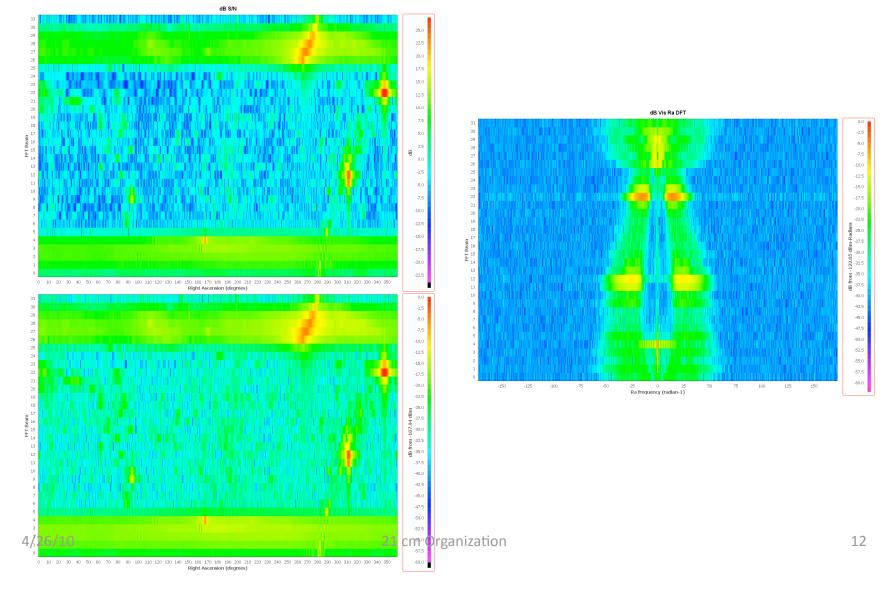

- R. Ansari, et al., "Reconstruction of HI power spectra with radio-interferometers to study dark energy," arXiv: 0807.3967 (July 2008)
- Tegmark & Zaldarriaga, "The Fast Fourier Transform Telescope," arXiv:0805.4414v1 [astro-ph] (May 2008)
- Chang, Pen, Peterson, & McDonald, "Baryon Acoustic Oscillation Intensity Mapping as a Test of Dark Energy," arXiv:0709.3672v2 [astro-ph] (Jan 2008)
- Peterson & Bandura, "The Hubble Sphere Hydrogen Survey," arXiv:astro-ph/0606104v1 (June 2006)

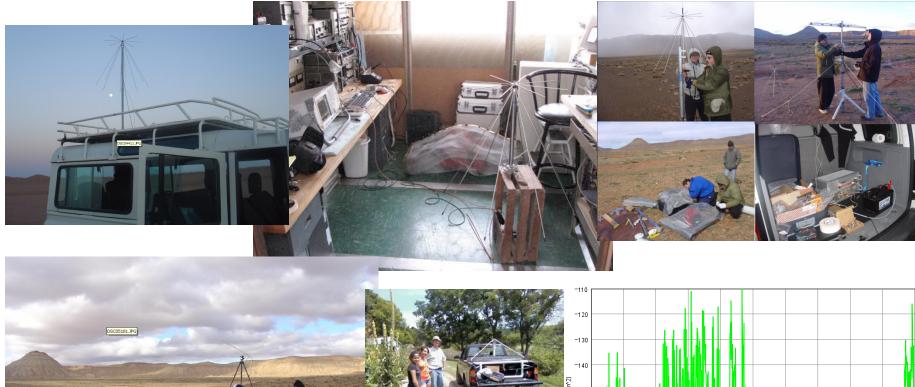
Pittsburgh Prototype

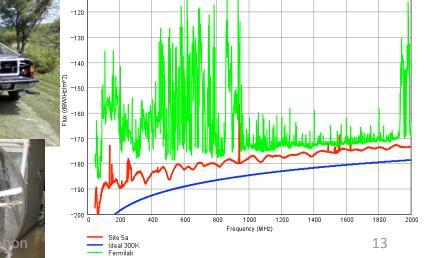
4/26/10


21 cm Organization

French Electronic Tests at Pittsburgh






21 cm Organization

Complete Sky and Instrument Simulations of the Pittsburgh Prototype

Site Tests

4/26/10

Technical Capabilities at FNAL

- RF analog signal processing (accelerator applications).
- RF digital signal processing (accelerator applications).
- High speed parallel data processing (particle experiments)
- High speed data transport (particle experiments)
- Complex simulations
- Large astronomical data sets (SDSS)
- Project management & cost & schedule discipline
- We are currently concentrating on simulations since those are most critical for the conceptual design report, but feel well-qualified to contribute in any or all of these areas.

Charge element 2c

- 2c) Assess the technical progress made to date. What resources were used and is the current technical status promising?
 - □ Prototype work at Carnegie-Mellon and CEA/IN2P3
 - Advanced simulations at FNAL
 - □ Site characterization measurements
 - Received travel and support for site characterization in FY09.
 - Main goal for FY10 is a conceptual design report. An R&D plan should emerge from the design study.

*

Charge Element 2d

- 2d) What is the expected technical role at FNAL? Does the lab have the required facilities and personnel to fulfill this role, or would we have to import radio astronomy expertise?
 - □ The technical role at FNAL is so far limited to contributing to the conceptual design report.
 - The lab has abundant resources to contribute to any aspect of this experiment.
 - An experienced radio astronomer would be a valuable asset for FNAL, but not a necessary one if there is sufficient expertise in the collaboration as a whole.

4/26/10

Charge element 3a

• 3a) Has a strong collaboration emerged, capable of mounting an experiment? What is the role of FNAL in this collaboration? Is there a project-oriented management structure being formed?

- There is a significant collaboration capable of producing a conceptual design report.
- □ The collaboration needs to grow in order to mount an experiment.
- A project management structure is in place and is sufficient for current needs.

Issues

- At the moment, there is no official support for the R&D effort.
- We are seeking an endorsement for this effort ...
 - Personnel charging time
 - Use need some support for travel
 - Prototype work to advance on the conceptual design work

Backup Slides

Management Committee

The management committee consists of one representative from each institution.

• Each member has three responsibilities

- To oversee and approve the activities of the chief scientist and instrument scientist
- □ To accept responsibility for tasks and provide line management for the activities at their respective institutions.
- To approve funding strategies and submission of proposals.

Management Committee Chair

- The role of the chair of the management committee is to run the committee: preparing the agenda, running the minutes, circulating minutes, etc.
- The committee will act by consensus amongst the various institutions. The role of the chair is to facilitate the building of this consensus.

Primary contact for the project.

- Coordinates the activities of the chief scientist and instrument scientist.
- Calls meetings as necessary to coordinate efforts.

Chief Scientist

Coordinates development of clear science goals.

- Coordinates outreach activities.
- Calls meetings as necessary to coordinate efforts.

Instrument Scientist

Coordinates creation of a conceptual design document including

- Technical design
- Budget
- □ Management issues
- Coordinates preparation of proposals.
- Coordinates instrument R&D that is determined to be necessary to the success of future proposals.
- Call meetings as necessary to coordinate efforts.

FY2010 Work Plan

- Organize project management structure
- Recruit collaborators
- Write conceptual design report (CDR)
- Define funding plan
- External review of the CDR and funding plan
- Pursue funding

Conceptual Design Report

- As noted previously, a large amount of design and prototyping work has taken place.
- It is possible to write a design report of the instrument at this point.
 - We will begin writing the instrument chapters once the project work plan has been developed.
 - These chapters will be written during March-May 2010.
- The most difficult part of the project will be foreground subtraction.
 - We have concepts on how to due the foreground subtraction and instrument calibration.
 - These concepts are not validated at this point.
 - We will finish simulations on these concepts by May 2010.
 - We will write the chapters on instrument calibration foreground subtraction in June 2010
- The conceptual design report should be completed by June 2010.

Funding Sources

- While writing the CDR and searching for external collaborators, the collaboration will identify an number of possible funding plans
- For example, one scenario could be:
 - 25% DOE
 - 25% NSF
 - 25% in-kind contributions from foreign collaborators
 - 25% from the host country that would cover infrastructure costs.
 - Fermilab would likely be a major player in this scenario
- Another scenario could be
 - 25% from an outside contributor (i.e. The Dubai Institute)
 - 20% NSF
 - 25% in-kind contributions from foreign collaborators
 - 25% from the host country that would cover infrastructure costs.
 - 5% from DOE
 - Fermilab would be a minor player in this scenario
- The amount that DOE contributes would be proportional to how large a roll Fermilab plays in the overall project.
- The funding plan will be presented to the Fermilab Physics Advisory Committee (PAC).

Timeline

- Organize Management Structure January 2010
- Agree on project and institution work plans February 2010
- Collaboration support building February-June 2010
- Write engineering portions of the CDR February-May 2010
- Complete foreground algorithms May 2010
- Finish CDR June 2010
- Internal review of the CDR May July 2010
- External review of the CDR May September 2010
- Presentation to the Fermilab PAC Fall 2010
- Pursue funding Fall-Winter 2010