Recent Results from MINOS

Bob Zwaska, Fermilab
for the MINOS Collaboration

2010 Fermilab Users Meeting
June 2, 2010
Tollestrup Award

Justin Evans – University College London
Measuring ν_μ and $\bar{\nu}_\mu$ oscillation parameters with MINOS

URA Thesis Prize

Tingjun Yang – Stanford University
Search for ν_μ to ν_e oscillations in MINOS
The MINOS Experiment

- High-intensity neutrino beam for oscillation experiments
 - Predominantly ν_μ beam
 - Explore and test the new standard model of neutrinos
- Operating since 2005
- Neutrino beam travels to northern Minnesota
 - 735 km baseline
 - Intense source at Fermilab
 - Oscillated source in Minnesota

Near Detector: 980 tons Far Detector: 5400 tons
Overview

• Background of the experiment and its physics
• Description of the experiment
• Focus on the beam and our knowledge of it
• Selection of current results
• Much more from Justin and Tingjun

➤ Note: a series of new results are in preparation and will be presented on June 14 at a special W&C and at the Neutrino 2010 conference
Physics Approach

1. Measure oscillation parameters at high precision
 - Muon-neutrino disappearance

2. Search for new, unobserved transitions and measure the associated parameters
 - Electron-neutrino appearance
 - Mass hierarchy & CP violation

3. Search for alternative transitions that come from other models and study standard neutrino interactions at high precision
 - Sterile neutrino searches
 - Anti-neutrino oscillation measurements
 - Lorentz violation
 - Neutrino cross-sections
 - Rare(r) interactions

\[\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix} \]

\[\Delta m^2_{32} = m_3^2 - m_2^2 \]
Long Baseline ν Oscillation Exps.

- Reproduce atmospheric ν effect using accelerator beams
- $L \sim 100$’s kilometers to match oscillation frequency

K2K (KEK to SuperK)

$L = 250$ km
Concluded (T2K starting)

MINOS

(Fermilab to Minnesota)

$L = 735$ km
2005

Near Detector:
980 tons

Far Detector:
5400 tons

CNGS (CERN to Gran Sasso, Italy)

$L = 750$ km
2006

Fermilab

735 km

12 km

10 km
New Players

• Neutrino physics is getting busy

• T2K: first event in far detector

• OPERA: first tau-neutrino observed
 ➢ Seminar on Friday

• Online in the next few years: Double-CHOOZ, Daya Bay, RENO, NOvA
The MINOS Detectors

- Steel / Scintillator sandwiches
- Magnetized steel
- Tracking calorimeters
 - Alternating planes of scintillator strips
 - PMT readout
- Functionally identical
- 1 and 735 km from the neutrino production target
- 980 and 5400 tons
MINOS Detectors

- Extruded plastic scintillator strips
- WLS fibers
- Multi-anode PMT

1” steel
Interaction Types

ν_μ CC Event

ν_μ \rightarrow μ^-

W \rightarrow n, p

NC Event

ν_α \rightarrow ν_α

Z \rightarrow n, p

ν_e CC Event

ν_e \rightarrow e^-

W \rightarrow n, p
Event Topologies

ν_μ CC Event

ν_e CC Event

NC Event

Monte Carlo

long μ track & hadronic activity at vertex
Event Topologies

\[\nu_\mu \text{ CC Event} \]

UZ

\[\nu_e \text{ CC Event} \]

VZ

Monte Carlo

NC Event

- long \(\mu \) track & hadronic activity at vertex
- short event, often diffuse
Event Topologies

ν_μ CC Event

- long μ track & hadronic activity at vertex

NC Event

- short event, often diffuse

ν_e CC Event

- short, with typical EM shower profile
Protons as Raw Material

- High-power 120 GeV beam from the Main Injector feeds the neutrino beam
- Typical beam power is 310 kW
 - Occasional running at 400 kW
 - 10^{20} total protons passed on May 5
- Weekly delivery of protons has continually improved
 - Thanks to the Accelerator Division
The NuMI Beam
“Neutrinos at the Main Injector”

- 400 kW design average power
- $\sigma \sim 1$ mm
- 2 interaction length, C target
- Produces π, K mesons
- Pulsed focusing horns
- Toroidal magnetic field
- Parabolic inner conductor profile
- Focuses meson momentum band

2 m diameter
- Roughly decay length for 10 GeV π^+
- Evacuated or He-filled & cooled

Absorbs 160 kW of protons and other hadrons
- Allows high-energy muons to penetrate

Roughly decay length for 10 GeV π^+

Absorbs 160 kW of protons and other hadrons
- Allows high-energy muons to penetrate

Muon Monitors

5 m
- 12 m
- 18 m
- 210 m

Hadron Monitor

Rock

Arrays measure distributions

Measure hadron & muon fluxes

Target

120 GeV protons
- From Main Injector

Target Hall

Decay Pipe

μ^+

π^+

ν_μ

Horns #1 #2

10 m

30 m

675 m
Neutrino Beam Design

Low Energy Beam

proton

Target

Horn 1

Horn 2

MINOS Data

Pions with
$p_T=300$ MeV/c and
$p=5$ GeV/c
$p=10$ GeV/c
$p=20$ GeV/c

Vary ν beam energy by sliding the target in/out of the 1st horn

High Energy Beam

proton

Target

Horn 1

Horn 2

P$^+$
Neutrino Energy Spectrum

- Optimal beam configuration for $|\Delta m^2_{32}|$ “Low Energy”
 - Focusing positive mesons

- Beam composition in the Near Detector
 - 91.7% of ν_μ
 - 7.0% of ν_μ
 - 1.3% of ν_e and $\bar{\nu}_e$

- Significant difference in energy spectra:
 - ν_μ peaks at 3 GeV
 - $\bar{\nu}_\mu$ peaks at 8 GeV
Precision Neutrino Beam

• Why is precision needed?
 ➢ 1000s of events in Far Detector, but 100s of millions in Near Detector
 ➢ Errors must be held to < 2% for oscillation analyses
 • Short-baseline measurements could do with much better

• Why is precision hard?
 ➢ Meson production cross sections not well known
 ➢ Neutrino interaction cross sections not well known
 • Both aggravated by nuclear effects
 ➢ Beam is produced over a large volume and mesons have numerous opportunities to reinteract
 ➢ High-power beam can damage components
 • Heating can also cause components to change position

• How do we achieve precision?
 ➢ Build everything to tight tolerances
 • Verify those tolerances
 ➢ Spend a lot of effort on simulation
 ➢ Incorporate external data
 ➢ Monitor the beam
 ➢ Use the enormous amount of Near Detector data with different beam tunes to constrain production
Achieving a Precision ν Spectrum

- Component placement affects the ν beam
 - Beam monitors detect changes in muon & hadron beams
 - Variation measured spill-to-spill
- Beam based alignment for all major components
- Horn 1 displacements affect pion focusing
Tuning MC

- Fit ND data from all beam configurations
 - Warp underlying hadron production to match neutrino data

- Simultaneously fit ν_μ and $\bar{\nu}_\mu$ spectra
Far/Near Ratio

- Point source -> both detectors same flux
- Due to finite pion lifetime, higher energy pions decay closer to ND
- Full simulation includes acceptance effects
Muon Monitor Tuning

- Measure muon fluxes in numerous beam configurations
 - Vary target position and horn current
- Parameterization for hadron production, $f(p_T, p_z)$.
- Warp p_T and p_z to tune default MC to Muon Monitor data.

Data Monte-Carlo Tuned Monte-Carlo
Muon Monitor Flux

- Shape only measurement
 - Large uncertainty in Ionization Scale flux requires normalization to MINOS data for $E_\nu > 26\text{GeV}$.
- Error bars come from...
 - π^+/π^- ratio, K/π ratio
 - Non-linearity
 - Backgrounds
- In situ measurement; accounts for real beamline conditions
- Independent of neutrino data

![Muon Monitor Flux Graph](image)
NuMI Target Degradation

Events Per POT v.s. Run ($E_\nu < 6$ GeV)

- Neutrino yield from the NuMI target degraded by ~5% over an exposure of ~ 6×10^{20} protons
 - Spectral shape also changes
- Analyses must allow for a changing beam
- This experience will guide the considerations for targets in future experiments
The ν_μ disappearance analysis:

- Run I+II (3.36 x 1020 POT)

Phys.Rev.Lett.101:131802,2008

- New analysis in preparation
- See Evans talk for more detail
ν_μ disappearance

- Use both low and high energy beam
 - Blind analysis
 - Expected 1065 ± 60 with no osc.
 - Observed 848 events.

- Energy spectrum fit with the oscillation hypothesis

\[
P(\nu_\mu \rightarrow \nu_x) = \sin^2 (2\theta) \sin^2 \left(\frac{1.27 \Delta m^2 L}{E} \right)
\]

\[
P(\nu_\mu \rightarrow \nu_\mu) = 1 - P(\nu_\mu \rightarrow \nu_x)
\]
Allowed Parameter Space

- Analysis of 7e20 is nearing completion
- Improvements:
 - Looser cuts as systematics are better understood
 - Combine anti-neutrinos
 - Add rock muons and the edges of detector

Best fit (3.1e20 protons)

- $|\Delta m_{32}^2| = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2$ (68% C.L.)
- $\sin^2(2\theta_{23}) > 0.95$ (68% C.L.), 0.90 (90% C.L.)
Alternative models

Two alternative disappearance models are disfavored:

[1] Decay without oscillations:
\[\chi^2/\text{ndof} = 104/97 \]
\[\Delta \chi^2 = 14 \]
disfavored at 3.7\(\sigma\)
(5.4\(\sigma\) if combine CC & NC)

[2] Decoherence:
\[\chi^2/\text{ndof} = 123/97 \]
\[\Delta \chi^2 = 33 \]
disfavored at 5.7\(\sigma\)

Search for active-neutrino disappearance:

- Directly test for ν_s using Neutral Current Interactions with Run I+II: 3.18×10^{20} protons

New analysis in preparation
Neutral Current Energy Spectra

- NC selected Data and MC energy spectra for Near Detector
- Good agreement between Data and Monte Carlo
- Discrepancies smaller than systematic uncertainties
- NC events are selected with 90% efficiency and 60% purity
Neutral Current Energy Spectra

- NC selected Data and MC energy spectra for Near Detector
- Good agreement between Data and Monte Carlo
- Discrepancies smaller than systematic uncertainties
- NC events are selected with 90% efficiency and 60% purity

- Far Detector reconstructed energy spectra for NC-like events
- Oscillation parameters are fixed. MC predictions with $\theta_{13}=0$ and θ_{13} at the CHOOZ limit are shown
 - ν_e charged current interactions selected as NC in this analysis
- Expect $377 \pm 19.4 ($stat$) \pm 18.5 ($syst$)$
 - Observe 388 events
Search for ν_e appearance:

with Run I+II+III (7×10^{20} POT)

- See Yang talk for more detail
Background - Near Detector Decomposition

• Use large Near Detector samples to measure backgrounds
 ➢ 3 different beams allow decomposition into background type
• Different backgrounds extrapolate differently to far detector
\(\nu_e \) Selected Far Detector Data

Background Prediction: 49.1 \(\pm \) 7.0 (stat) \(\pm \) 2.7 (sys)

Observed Data: 54

0.7 sigma excess above background
Limits

- Set limits based on total selected events

MINOS sets the tightest limits on θ_{13} assuming a normal mass hierarchy
Antineutrino Disappearance in a Neutrino Beam
with Run I+II (3.2×10^{20} POT)
New analysis in preparation
- See Evans talk for more detail
Antineutrinos at the Far Detector

• **Predict:**
 - Null oscillations: \(64.6 \pm 8.0 \text{ (stat.)} \pm 3.9 \text{ (syst.)}\)
 - CPT conserving oscillations: \(58.3 \pm 7.6 \text{ (stat.)} \pm 3.6 \text{ (syst.)}\)

• **Observe:**
 42 events

- Examine 7% antineutrino component
- Detector magnetic field allows charge discrimination
Dedicated Antineutrino running

- Reverse current in the NuMI focusing horns.
- Obtain a greatly enhanced antineutrino sample below 5 GeV (incl. the oscillation maximum).
- Have accumulated 1.76×10^{20} in this mode

- Will enable a more precise measurement of the antineutrino oscillation parameters than possible with forward horn current
- Analysis is nearing completion
Selection of Additional Measurements

- **Atmospheric neutrinos**
 - New analysis in preparation
- **Lorentz Invariance**
 - New analysis in preparation
- **Neutrino cross sections**
 - Several others under preparation
- **Sudden Stratospheric Warming (Climate Physics with cosmic rays)**
- **Cosmic ray variation with season**
 - Phys.Rev.D81:012001,2010
- **Cosmic ray charge ratio**
Conclusion

• MINOS is a mature experiment
• Significant effort has resulted in a precisely understood beam
• Several of the major goals have been achieved
 ➢ Muon-neutrino disappearance verified as an oscillation phenomenon
 • Parameters precisely measured, alternatives rules out
 ➢ The neutrinos change into a type that interacts via the Neutral Current
 • Predominantly not ν_e – so we presume ν_τ
 ➢ Limits on electron-neutrino appearance have been improved
• Improvement still to be made
 ➢ Better measurements / limits (evidence?)
 ➢ Exploration of anti-neutrinos
• Wide range of additional measurements
 ➢ Neutrino fluxes / cross sections / interaction types
 ➢ Cosmic ray physics (and applied to atmospheric physics)
• Enjoy the next few talks, and come to the W&C on June 14
Recent MINOS Theses

- **Bob Armstrong** – Indiana University
 - Muon neutrino disappearance at MINOS

- **Pedro Ochoa** – California Institute of Technology
 - A search for muon neutrino to electron neutrino oscillations in the MINOS experiment

- **Steve Cavanaugh** – Harvard University
 - A Measurement of Electron Neutrino Appearance in the MINOS Experiment After Four Years of Data

- **Anna Holin** – University College London
 - Electron neutrino appearance event selection optimization in the MINIS far detector

- **David Auty** – University of Sussex
 - Analysis of numubar from the NuMI beam

- **Laura Loiacano** – University of Texas at Austin
 - Measurement of the Muon Neutrino Charged Current Inclusive Cross Section on Iron

- **Masaki Watabe** – Texas A&M University
 - Using Quasi Elastic Events to Measure Neutrino Oscillation with the MINOS detectors in the NuMI Neutrino Beam