

The CRÈME Tools on the Internet

Marcus H. Mendenhall, Brian Sierawski, Robert A. Weller, and Robert A. Reed

Department of Electrical Engineering & Computer Science and Institute for Space and Defense Electronics Vanderbilt University

Acknowledgements:

- NASA MSFC: Advanced Avionics and Processor Systems (AAPS), formerly RHESE
- The Geant4 collaboration, especially Makoto Asai, Dennis Wright and Vladimir Ivantchenko
- DTRA Basic Research and Radiation Hardened Microelectronics Programs
- NASA GSFC: NASA Electronic Parts and Packaging (NEPP) Program
- LANL and TRIUMF, for collaborative work

What is the Crème site?

 Omnibus web site for modeling of energy deposition in materials due to heavy particle radiation

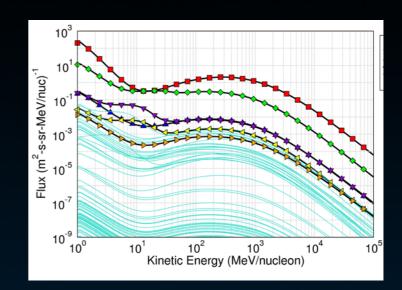
Provides access to:

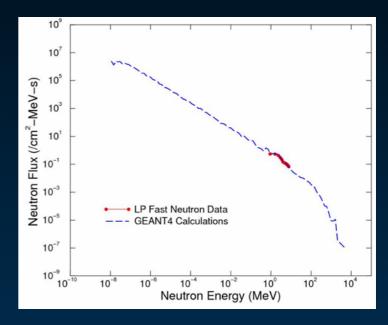
- *Legacy Creme-86 and Creme-96 RPP models
- *New, Geant4-based Crème-MC Monte-Carlo radiation transport in multilayer stacks
- *Secure and simple management of files on site
- *Plotting and download of data from all simulations

Site Feature Status

Feature	Status
CREME96 Modules	Public
Updated GCR Model	Public
Multiplanar Stack	Beta
MC Sensitive Volumes	Beta
CREME86	Alpha
Lunar Neutron Albedo Model	Alpha
Probabilistic Solar Proton Models	Development
HZETRN Radiation Transport	Development
Radiation Transport Through Spacecraft	Development
Revised Geomagnetic Cutoff Model	Development

- Naval Research Laboratory was shut down CREME96 on July 19, 2010
- Users should register with CRÈME: https://creme.isde.vanderbilt.edu
- **Public release scheduled for November 2010**
- Normal Registration does not provide access to MC tools... email a request to be a beta user


Why is Crème-MC important or useful?

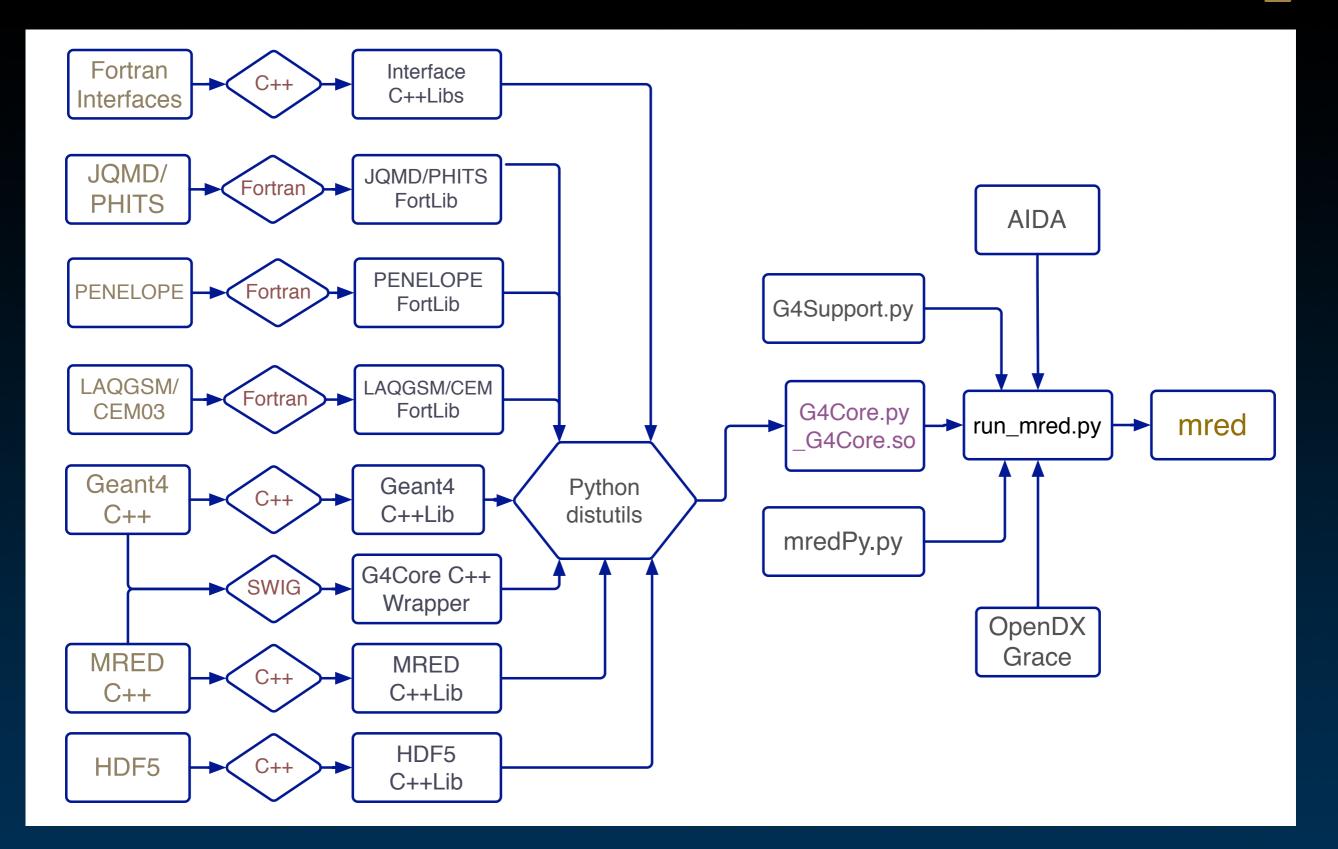


- For simple geometries, provides highly detailed particle transport and energy deposition
- Allows Creme-96 GCR, trapped proton and geomagnetic transmission models to generate particle fluxes to transport with Geant4
- Has multiple-device coincidence capability built in
- Has weighted-sensitive-volumes built in to account for partial charge collection from regions distant from device center
- Includes CEM03 and LAQGSM nuclear models for high-fidelity breakup of heavy nuclei at cosmic-ray energies

Radiation Environments

- Legacy models
 - * CREME86 and CREME96
- Updated Galactic Cosmic Ray model (ISO 15390:2004)
- Lunar Neutron Albedo model (Adams, 2007)
- Probabilistic Solar Proton Models
 - * Worst-Case Peak Flux Spectra
 - ESP model for protons (Xapsos et al., 1998)
 - Extend to heavy ions
- Worst-Case Event Fluence Spectra
 - * ESP model for protons (Xapsos et al. 1999)
 - * Extend to heavy ions
- Worst-Case Cumulative Mission Spectra
 - * Psychic model extended to include heavy ions (Xapsos et al., 2007)

19/Aug/2010



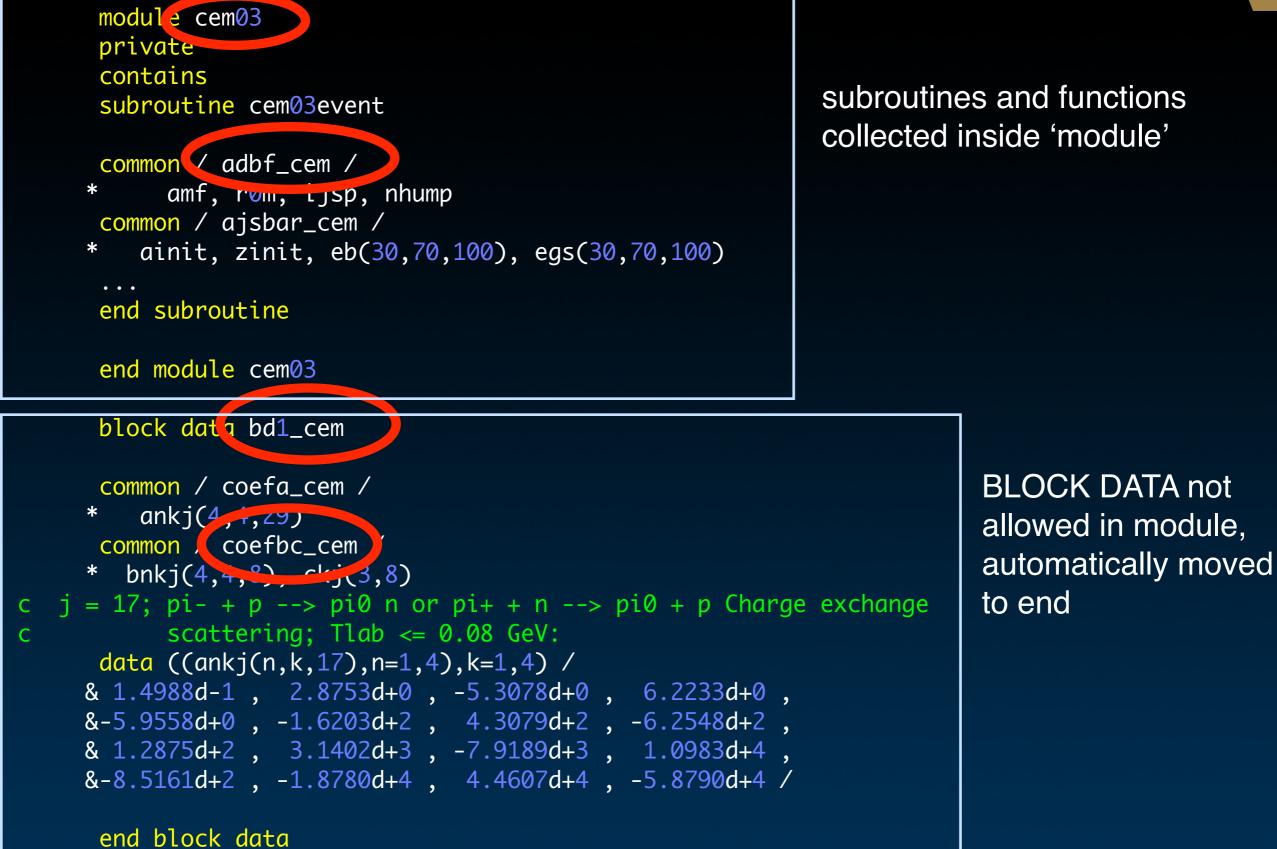
Crème-MC technology

- Web site is controlled via Plone to provide secure environment and file management
- Using much custom Python glue code, site produces a set of files which are digested by Vanderbilt MRED code
- MRED is a python-wrapped Geant4 application optimized for small (semiconductor-scale) geometries

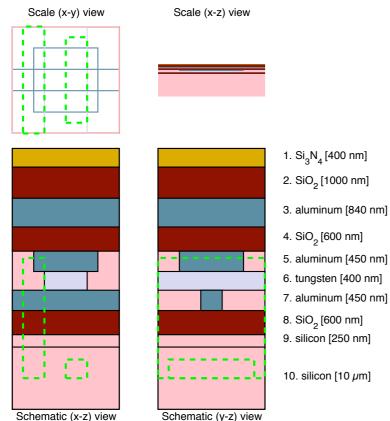
MRED Architecture

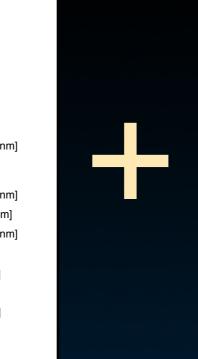
Extended nuclear physics codes

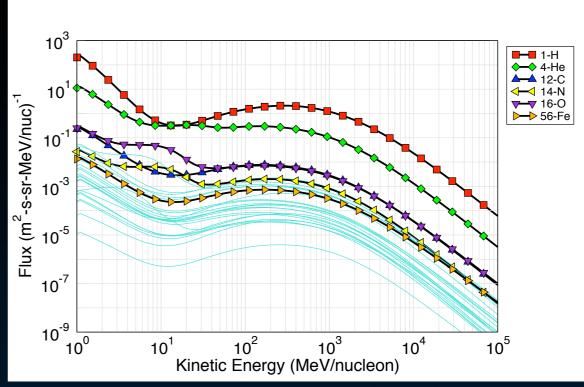
- Heavy-ion driven nuclear fragmentation drives many important types of microelectronic events
- National labs, etc., have very detailed nuclear physics models, mostly written in FORTRAN, which can provide high fidelity reactions.
- Need to be able to use these codes in our framework
 - *These codes are not designed to be executed inside the framework of other codes. They are stand-alone.
 - *Common heritage of codes means many COMMON blocks and variables have same names


Tool for importing FORTRAN codes

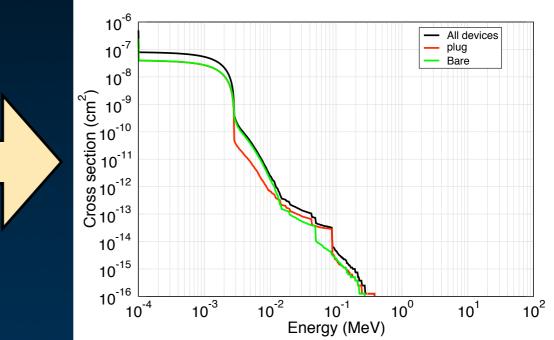
- Automated Python script collects and rearranges code and renames structures to avoid conflicts
 - * All separate files collected into a single big file
 - * Main code body moved into FORTRAN 'module'
 - * BLOCK DATA statements collected and moved to end, renamed with unique names e.g. BLOCK DATA constants -> BLOCK DATA constants_cem
 - * COMMON blocks renamed with unique names e.g. COMMON reaction -> COMMON reaction_cem
- + c++ & python interface generated
- Automated procedure guarantees 2 things:
 * low probability of bugs introduced via typos
 * updates in master code easily reincorporated
- This is a unique tool -- no one else has this machinery


Sample rearranged code





marcus.h.mendenhall@vanderbilt.edu Geant4 Space Users Workshop, 2010


Conceptual framework of Crème-MC

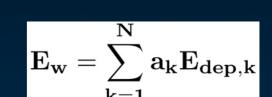
Integral Cross Section of helium plug high stat

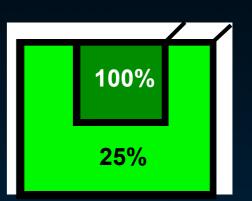
	1	E	crit:	.01			
xmin	ymin	zmin	xmax	ymax	zmax	alpha	Use ellipsoid?
-20	-25	-2	-10	25	5	1	
add volur	ne						
- Device Para	meters —						
			·				
Name: dev	2	E	crit:	.01			
							Use
xmin	ymin	zmin	xmax	ymax	zmax	alpha	ellipsoid?

marcus.h.mendenhall@vanderbilt.edu Gea

Geant4 Space Users Workshop, 2010

Capabilities




- Create stacks with arbitrary number of layers of materials commonly found in electronics
- Create either monochromatic beam or 'space environment' as radiation source
- Define multiple 'devices', each consisting of a set of RPPs or ellipsoids with specified collection weight
- Manage range cuts for either
 - * high detail of delta ray tracking (LET mode)
 - * lower detail, to allow very large numbers of incident ions (nuclear reaction mode)
- Produce histograms of energy deposition and of integral cross section
- Compute coincidence rates between devices

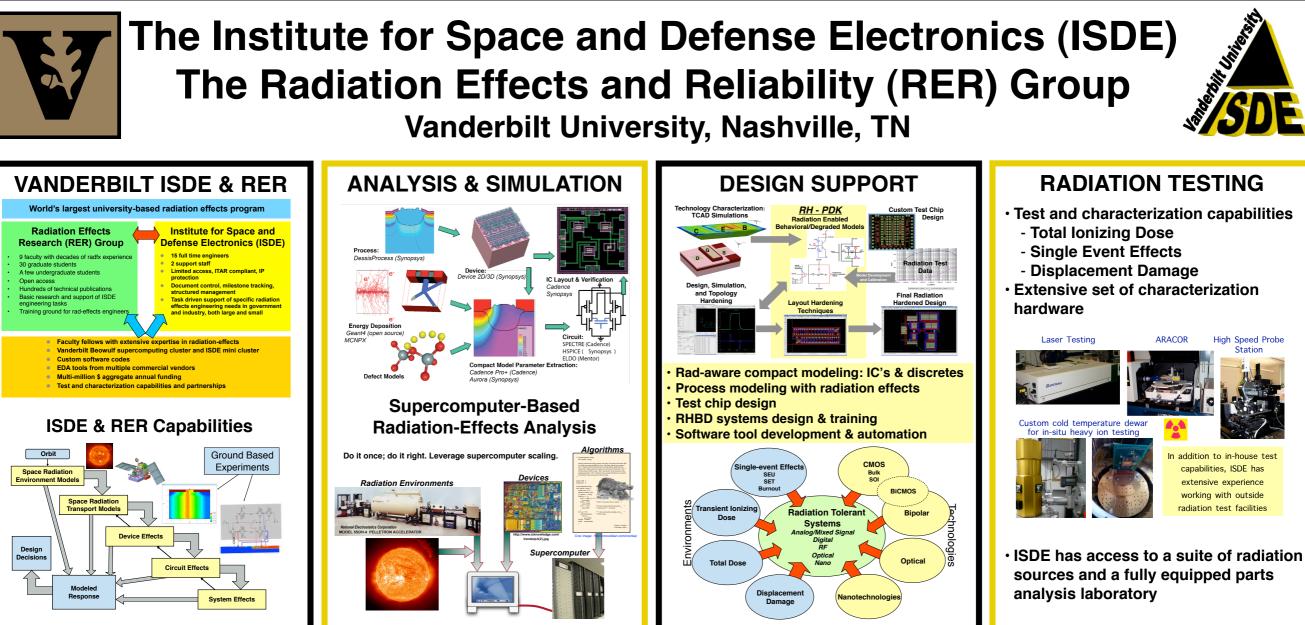
Sensitive Volumes

- Weighted sensitive volumes relate spatial ionizing energy deposition with charge collected at a circuit node
- Volumes may be rectangular parallelepipeds or ellipsoids
 - * Each have a location within the multilayer stack, size, and efficiency
 - * Volumes may overlap or be disjoint

Device Parameters							
Name: NM	OS		Ecrit:	0			
xmin	ymin	zmin	xmax	ymax	zmax	alpha	
-0.5	-0.5	0	0.5	0.5	0.5	0.75	elete
-1	-1	0	1	1	1	0.25	elete
add volun	ne						

Multiple Device Models

- Represent class of failures requiring multiple circuit nodes to collect charge
- Multiple cell upsets, DICE latches, etc
- Sensitive volume models are specified for each device and given upset threshold
- Cross sections and SEU rates are provided based on frequency of events meeting coincidence requirement


— Device Parameters —		
Name: Device1 Ecrit: 0.0225 xmin ymin zmin xmax ymax zmax alpha -3 -1 0 -1 1 1 > delete > add volume	Device 1	Device 2
Device Parameters Name: Device2 Ecrit: 0.0225 ymin ymin ymin ymax ymax ymax ylaba		
xmin ymin zmin xmax ymax zmax alpha 1 -1 0 3 1 1 1 elete add volume		

Extended Services From ISDE

Website is backed by the electronics expertise of ISDE

- *Largest university-based microelectronics radiation group worldwide (?)
- *Can provide expertise in setting up model systems, running simulations, and interpreting results
- * Problems which are beyond capabilities of the web interface can be migrated to full MRED sims, with almost unlimited flexibility via Python interface.
- * Maintain close working relation with G4 collaboration, especially SLAC group and EM physics.
- ISDE can coordinate full accelerator-based tests to validate calculations

marcus.h.mendenhall@vanderbilt.edu Geant4 Space Users Workshop, 2010

19/Aug/2010