7th Geant4 Space User's Workshop

Seattle, 18-20 Aug 2010

Geant4 at INTA

S. Ibarmia⁽¹⁾, A. Rivera^(1,2), S. Esteve⁽¹⁾

⁽¹⁾ National Aerospace Technology Institute, INTA
 ⁽²⁾ Ingeniería y Servicios Aeroespaciales, INSA

Areas of application

ENGINEERING

Space Environment Analysis & Specification

- Modeling of realistic S/C geometries
- Environment propagation
- Estimation of radiation levels

Shielding Analysis

- Optimization of S/C or P/L designs
- SSAT, FW MC techniques

Simulation of Irradiation Tests

- To support irradiation campaigns
- Simulation of testing beams & setup configurations

Spanish Micro/Nano Programmes

Colaboration with Universities

ESA Missions

Areas of application

R & D

Instrument Design

- Support to radiation sensors design
- Calibration of sensors

Geant4 Developments

- Parallelization / Cluster implementation
- G4/GRAS developments

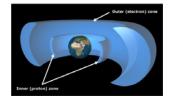
Operational Tools

Real-time radiation damage for operating missions

Semiconductor

G4 & TCAD simulation of devices

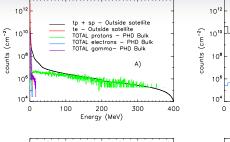
National Earth Obs – TTT P/L



R&D New Carbon Materials

ESA Programmes

ENERGETIC E- R&D



Supported missions: INTA Micro / Nano

NANOSAT - 01

- Launched: 2004 (still flying)
- LEO Sun-Sync ~800 km
- Full S/C Geant4 model
- Geant4 activities:
 - Radiation levels estimation for P/L
 - Shielding anlaysis / Dose Mapping
 - OWLS modules detailed analysis

Outside satellite TOTAL electrons PHD Bulk

10

Energy (MeV)

C)

15

20

104

0

5

10

Energy (MeV)

15

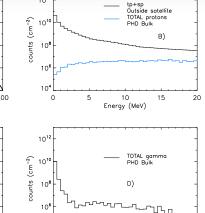
20

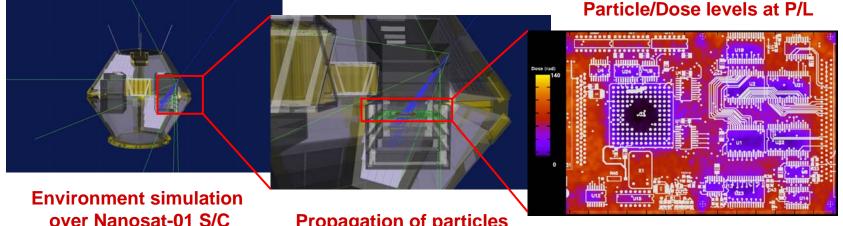
1012

1010

10

10

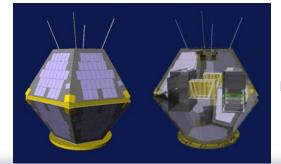

104

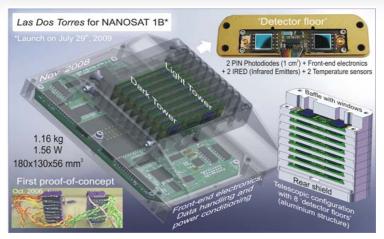

0

5

 (cm^{-2})

ŝ




Supported missions: INTA Micro / Nano

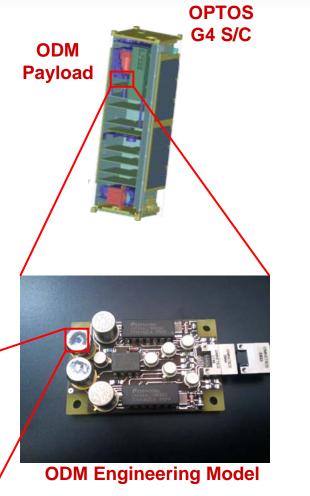
NANOSAT – 1B

- Launched: 2009
- LEO Sun-Sync ~800 km
- Radiation P/L
 - TID RadFET sensors
 - NIEL Photodiode Towers (TTT)
 - Accidentally SET detection
- Full S/C Geant4 model
- Geant4 activities:
 - Radiation levels estimation for P/L
 - Correlation with on-board TID and NIEL sensors

StriosAT 70

The Two Towers Precursor. Developed by INTA Optoelectronics Lab

SET events experienced in Nanosat-1B. Courtesy of INTA Optoelectronics Lab


Nanosat Platform Geant4 Model

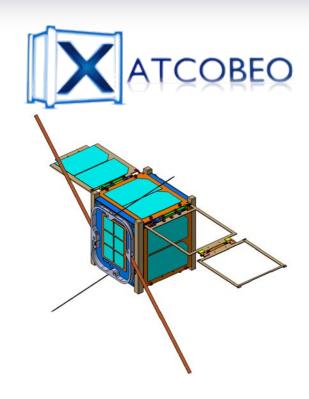
Supported missions: INTA Micro / Nano

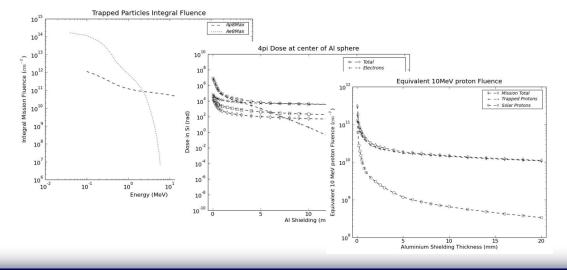
OPTOS / ODM

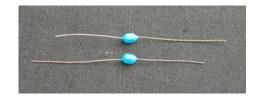
- Launch: end 2010
- LEO Sun-Sync ~600 km
- Radiation P/L
 - Dosimetry Multiple RadFET sensors
- Full S/C Geant4 model
- Geant4 activities:
 - Radiation levels estimation
 - Environment models vs. On-board data
 - RadFET simulation

High sensitivity dose sensors

(CNRS LAAS RadFETs)

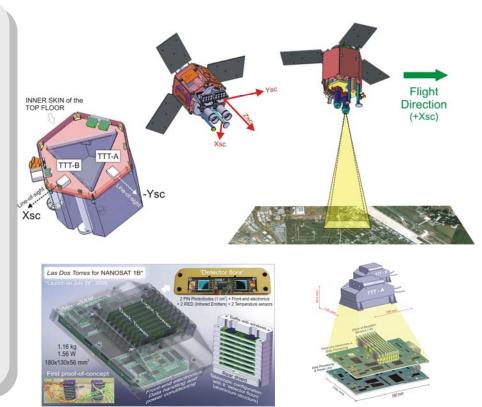

Supported missions: INTA - Universities


XatCobeo


- Launch: 2010? 2011? VEGA
- Radiation P/L

GEANT4 @ INTA

- NIEL Dosimetry Multiple PIN Diodes
- Full S/C Geant4 model
- Geant4 activities:
 - Radiation levels estimation
 - Environment models vs. NIEL On-board data

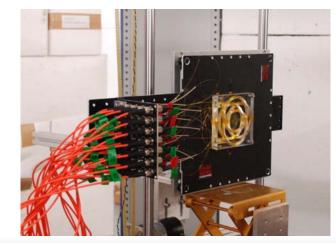


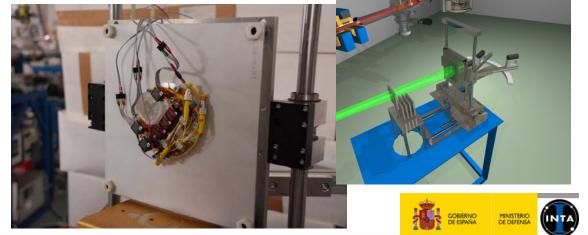
Supported missions: Nat. Obs. Prog. TTT

INGENIO / TTT Payload

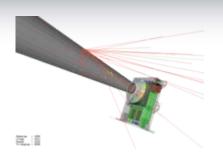
- Launch: ~2012
- Earth observation mission
- Radiation P/L : TTT+ (The Two Towers 2G)
 - NIEL & TID
 - Multiple env. sensing technologies
- Geant4 activities
 - TTT Geant4 model
 - TTT design and calibration
 - Radiation levels estimation at TTT
 - Correlation with on-board data

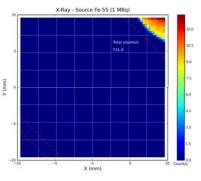
The Two Towers Precursor at NS-01 and next generation for INGENIO mission Developed by INTA Optoelectronics Lab


Supported missions: ESA programmes


EXOMARS / RLS Payload

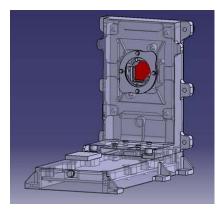
- Launch: ~2018
- Raman Laser Spectrometer (RLS)
- Geant4 activities
 - Simulation of radiation tests for components (Lasers, Optic fibers, Photodiodes)
 - Particle & RHU propagation on exomars rover and RLS payload



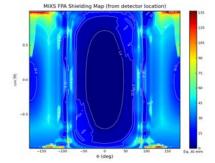

Supported missions: ESA programmes

BepiColombo / MIXS

- Launch: ~2014
- Mercury Imager X-ray Spectrometer (MIXS)
- Geant4 activities
 - Shielding analysis of MIXS instrum
 - X-Ray sources simulation
 - Environment propagation
 - Particle focusing / Deflecting

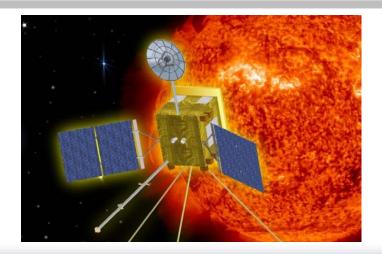


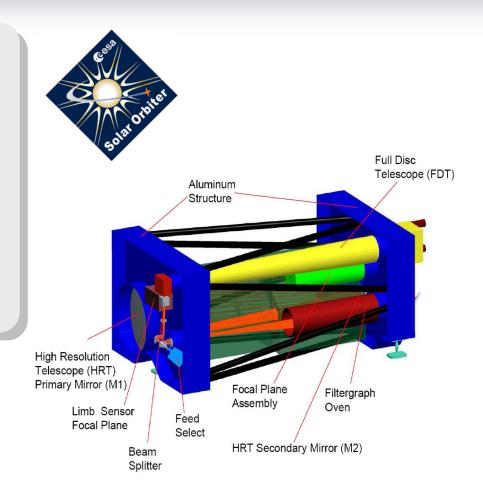
Radiation studies MIXS FPA Design



BepiColombo MIXS Instrument

FPA G4 Model

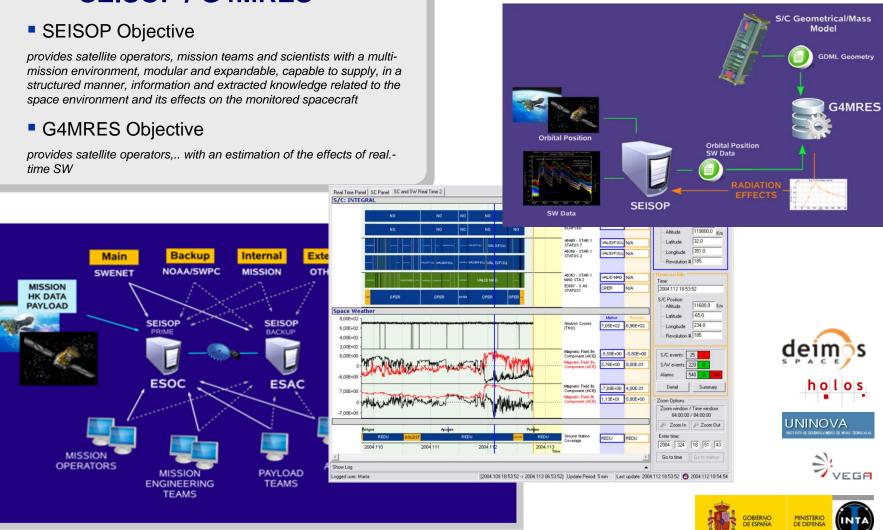




Supported missions: ESA programmes

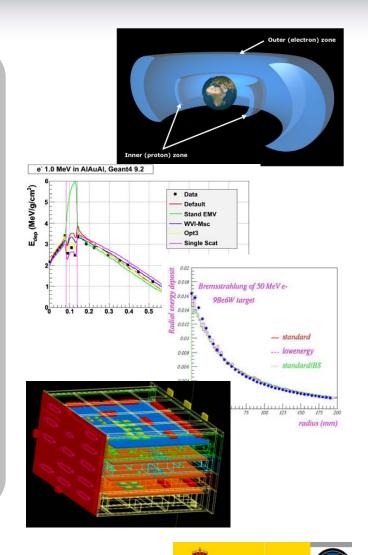
Solar Orbiter / PHI

- Launch: ~2017 / 2018
- Polarimetric and Heliosismic Imager (PHI)
 - FDT Full Disk Tekescope
- Geant4 activities
 - Simulation of irradiation tests for Optical Components (LCVRs)
 - Environment propagation on FDT
 - Radiation levels estimation for FDT



ESA Operational Tools

SEISOP / G4MRES


ESA Geant4 R & D

Energetic Electron Shielding, Charging and Radiation Effects and Margins

AO/1-6049/09/NL/AT

(THALES ALENIA SPAIN, G4AI, TRAD, ONERA, ARTENUM & INTA)

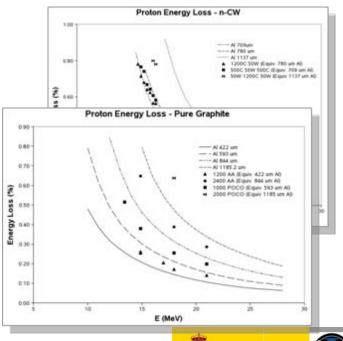
- Review of EM physics (energetic electron emphasis)
- Comparison of codes & tools
- Validation of new EM models / Beam testing
- Focused on internal e- charging
- New interfaces/updates: SPENVIS, FASTRAD, ESABASA, Geant4/GRAS, MULASSIS, GEMAT,...
- SHIELDOSE update
- Shielding analysis for common configurations
 - Multi-Layer, real E-box, Ics, …
- Margins analysis and reduction

Other INTA R & D programmes

CMRS

(INTA, Alicante Univ. & Granada Univ.)

Objective


Synthesis, simulation and testing of Carbon-Metal multilayer structures for radiation shielding

Geant4 Activities

Simulation of structures and beam tests

Multi-layer Carbon + Tantalum

GOBIERNO DE ESPAÑA MINISTERIO DE DEFENSA

Summary & Future

Summary

- INTA is applying Geant4 as standard Radiation Tool
 - Many different programmes supported
 - Spreading this methodology to the space industry
- Main scenarios of successful application

GEANT4 @ INTA

- Engineering support to missions
- Instrument design and calibration
- Geant4 R&D and new tools
- However for industrial applications, still some needs:
 - CAD interfacing, computational speed, physics interfacing, accuracy, margins, usability, …

GOBIERNO DE ESPAÑA

Summary & Future

Future of Geant4 at INTA

- MISSIONS supported with G4:
 - OPTOS 2G

GEANT4 @ INTA

Space Weather payloads are foreseen: Ionospheric sensors (TEC)

- INTA Microsat (150 kg) & Nanosat-2 (22 kg)
 Next generation INTA missions
- R&D, Operational Tools
 - G4MRES next generation, open to G4 community?
 - G4 + TCAD analysis of sensors
- Paticipation / Supporting related forums (G4SUW, SEENoTC,...)
- Supporting of ESA programmes:
 - SO/PHI, Exomars/RLS, BepiColombo/MIXS, etc.

MINISTERI DE DEFENS

DE ESPAÑA