
Multiprocessing in Athena

1

I. Performance study of Athena event and job
level parallelism on multi-core systems.

II. Performance optimizations in AthenaMP.

Athena multi jobs
Athena MJ - job level parallelism

end

for i in range(4):
$> Athena.py -c “EvtMax=25; SkipEvents=$i*25” Jobo.py

c
o

re
-
0

JOB 0:
Events: [0,1,…,24]

c
o

re
-
1

JOB 1:
Events: [25,…,49]

c
o

re
-
2

JOB 2:
Events: [50,…,74]

c
o

re
-
3

JOB 3:
Events: [75,…,99]

LBL-ATLAS-Computing, 2010

PARALLEL: independent jobs

start

endstart

endstart

endstart

init

init

init

init

2

AthenaMP - event level parallelism

end

Input
Files

Output
Files

OS-fork merge

$> Athena.py --nprocs=4 -c EvtMax=100 Jobo.py

firstEvnts

c
o

re
-
0

WORKER 0:
Events: [0, 4, 8,…96]

c
o

re
-
1

WORKER 1:
Events: [1, 5, 9,…,97]

c
o

re
-
2

WORKER 2:
Events: [2, 6, 10,…,98]

c
o

re
-
3

WORKER 3:
Events: [3, 7, 11,…,99]

output-
tmp
files

output
tmp
files

Output
tmp
files

Output
tmp
files

LBL-ATLAS-Computing, 2010

init

Maximize
the shared
memory!

PARALLEL: workers event loopSERIAL:
parent-init-fork

SERIAL:
parent-merge and finalize

AthenaMP Status by S.Binet -
http://indico.cern.ch/getFile.py/access?contribId=2&resId=0&materialId=slides&confId=92059

3

4

Memory footprint of AthenaMP & AthenaMJ

AthenaMP ~0.5 Gb physical memory saved per process

5

AthenaMP AthenaMJ

Event throughput of AthenaMP and AthenaMJ

Hit the memory limit, swapping

6

1. External Optimizations:

(no touching complex Athena code)

 Hardware Optimizations: HT, QPI, NUMA, Affinity

 OS optimizations: affinity, numactl, io-related, disks,
virtual machines, etc.

 Compiler, Malloc, etc.

2. Gains from AthenaMP/Athena design improvements:

 Shared memory, forking later after init

 Queue event distribution
endless ground for improvements :)

7

Architecture upgrades
Intel Nehalem

coors.lbl.gov, rainier.lbl.gov

Intel sub-Nehalem
most of LXPLUS machines:

Voatlas91,lxplus250,lxplus251

CPU-Memory symmetric access
• Hyper Threading ->two logical cores on physical one

• QPI Quick Path from CPU to CPU and CPU-to-Memory

• Turbo Boost -> dynamic change of CPU-frequency

• CPU-Memory non-symmetric access (NUMA)

8

Event Throughput per process for RDO to ESD reco
on different machines

9

Gain from Hyper-Threading

AthenaMP Athena MJ

10

Setting affinity of workers to cpu-cores
Affinity: pinning each processes to a separate CPU-core

Floating: each process scheduled by OS; core switching is frequent

11

Workers floating
Workers pinned to cpu-cores

Event workers throughput

Recent Progress:
Event distribution using Queue…

c
o

re
-
0

WORKER 0:
Events: [0, 4, 5,…]

c
o

re
-
1

WORKER 1:
Events: [1, 6, 9,…]

c
o

re
-
2

WORKER 2:
Events: [2, 8, 10,…]

c
o

re
-
3

WORKER 3:
Events: [3, 7, 11,…]

LBL-ATLAS-Computing, 2010

events = multiprocesssing.queue(EvtMax+ncpus)
events = [0,1,2,3,4,…,99, None,None,None,None]

…

evt_loop(evt=events.get(); evt != None):
evt_loop_mgr.seek (evt_nbr)
evt_loop_mgr.nextEvent ()

Balance the arrival times of workers!
Slower worker doesn’t get left behind

Lost evt order

12

13

Round-robin event

distribution

Queue event

distribution

Workers throughput for Queue

 AthenaMP shares memory about ~0.5 Gb of real
memory footprint per worker.

 Queue balances workers arrival times thus improving
mp-scaling.

 Hyper-Threading can give 25-30% gain on events
throughput

 Affinity settings exploit CPUs better than linux cpu
scheduling.

 NUMA effects take place on Nehalem CPUs.

.
14

1. Externally available performance gains (without
touching the athena code)

 Architectural gains: HyperThreading, QPI, NUMA etc.

 OS gains: affinity, numactl, io-related, disks, virtual
machines, etc.

 Compiler, Malloc, etc.

2. Gains from Athena/AthenaMP design improvements:

 Faster initialization…

 Faster distribution of events to workers...

 Faster merging: merging events processed by workers
instantly by one writer on a fly, without waiting for
workers to finish…

 Faster finalization…
endless ground for improvements :)

15

• Paolo Calafiura, Sebastien Binet, Yushu Yao,
Charles Leggett, Wim Lavrijsen

• Keith Jackson, David Levinthal

• Ian Hinchliffe and LBL ATLAS Group

• LBNL and DOE for Funding

• CERN for Research

16LBL-ATLAS-Computing, 2010

