
I/O challenges for HEP applications on
multi-core processors

An ATLAS Perspective

Mini-Workshop on multi-core joint project
Peter van Gemmeren (ANL)

AthenaMP: The Process point of view

• AthenaMP is the ALTAS multi-core framework
• Diagram taken from Sebastien Binet (thanks).

init fork Collect

bootstrap

205/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

init fork Collect
&

merge

bootstrap

bootstrap

bootstrap

parallel event processing

Merge

• In AthenaMP each worker node produces it own output file, which need to be
merged after all worker are done.
– Done in serial, can take significant amount of wall clock time.

• For ATLAS, which uses transient / persistent separation and data stored in POOL /
ROOT there are 3 different merge level:
– Athena merge (b -> B -> P -> T -> T -> P -> B -> b)

Currently used, slow• Currently used, slow

– Direct persistent to persistent copy in Athena (b -> B -> P -> P -> B -> b)
• Waiting for adoption, 20 – 30 % less slow

– Fast POOL / ROOT merge (b -> b)
• Outside Athena, does not yet work, 10 – 20 times faster

305/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

decompress Pers. to Trans

Compressed
baskets (b)

Persistent
State (P)

Transient
State (T)

Baskets
(B)

stream

Full Athena merge
(b -> B -> P -> T -> T -> P -> B -> b)

• Runs inside Athena Event Loop:
– Uncompress ROOT baskets, rebuild persistent objects.
– Convert persistent to transient objects
– Do nothing with transient objects
– Convert transient to persistent objects
– Stream persistent objects into ROOT baskets and compress

• Produces Output File which is very similar to one produced by a single core
processing all input events.
– Handles Metadata propagation using full Athena framework.

• However, there may be metadata which is irreproducible from many incomplete jobs (e.g.,
lumiblock information)

– Re-optimizes persistent Data Objects
• E.g.: The file has one GUID which is used in all the DataHeader (and read only once for all

events)

– Re-optimizes ROOT baskets
• Small baskets are combined and re-compressed.

405/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

Direct persistent to persistent copy in Athena
(b -> B -> P -> P -> B -> b)

• Same as full Athena, but without P -> T and T -> P
– Uncompress ROOT baskets, rebuild persistent objects.
– Do nothing with persistent objects
– Stream persistent objects into ROOT baskets and compress

• Can do P -> T and T -> P for selected objects
• Creates new DataHeader and re-optimizes its persistent representation (as in full • Creates new DataHeader and re-optimizes its persistent representation (as in full

athena)
• Produces Output File which is very similar to one produced by a single core

processing all input events.
– Handles Metadata propagation using full Athena framework.
– Re-optimizes selected persistent Data Objects
– Re-optimizes ROOT baskets

505/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

Fast POOL / ROOT merge (b -> b)

• Run as separate POOL application, not using the Athena framework
• Does not currently work for ATLAS events, using external tokens

– Recent (CVS head -> POOL nightly) modifications by Markus Frank and myself promise
to enable POOL fast merge for ATLAS events

• Even when POOL fast merge works, there are inherent limitations:
– Can’t Summarize metadata

• Metadata records have to be summarized on every read.

– Navigational references are not updated
• Utilize POOL redirection, which may cost time.

– Re-optimize storage layout (-> non-optimal compression, slower read speed for some
objects)
• In principle this could be overcome, by having ROOT uncompress, combine and recompress the

buffer (b -> B -> B -> b). However this will slow down the merge significantly.

605/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

AthenaMP: The I/O point of view

init fork Collect
&

merge

bootstrap

bootstrap

bootstrap

705/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

bootstrap

parallel event processing

Input File

Output
Filetemporary

output
files

AthenaMP: The I/O point of view, to be fair

805/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

Input File

Output
Filetemporary

output
files

So what’s wrong with that?

• Read data: A process (initialization, event execute,…) reads part of
the input file (e.g., to retrieve one event).

• All worker use the same input file, which in general is to large to be cached in memory.
• Multiple access may mean poor read performance, especially if events are not consecutive.

• Uncompress / Stream ROOT baskets: Each reader (i.e. worker) will retrieve
its event data, which means reading multiple ROOT baskets, uncompressing them
and streaming them into persistent objects.and streaming them into persistent objects.
– ROOT baskets contain object member of several events, so multiple worker may use the

same baskets and each of them will uncompress them independently:
• Wastes CPU time (multiple uncompress of the same data)
• Wastes memory (multiple copies of the same Basket, probably not shared)

• Write data: Each process writes its own output file.
• Compress / Stream to ROOT baskets: Writer compress data separately.

• Suboptimal compression factor (which will cost storage and CPU time at subsequent reads)
– This can be ‘healed’ later by using Athena merge.

• Wastes memory (each worker needs its own set of output buffer)

905/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

AthenaMP -> ~GaudiParallel: The Scatter/Gather
point of view

1005/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

Input File

Output
FileOutput Daemon (Writer)

Receives pers. objects, streams, compresses

Input Daemon (Reader)
Uncompress, stream, provide pers. objects

MetaData processor

MetaData processor

AthenaMP -> ~GaudiParallel:

• GaudiParallel follows MPI Scatter / Gather scheme
– Reduces I/O, total memory, CPU & Wall Clock time and even disk space
– I/O uses new Reader / Writer classes

• Serialize whole event from Transient Data Store and send it to worker process

• Athena
– Uses StoreGate (flat data store) instead of Gaudi Transient Data Store (hierarchical).

StoreGate (and ATLAS persistency) support C++ classes with all their capabilities / complexity• StoreGate (and ATLAS persistency) support C++ classes with all their capabilities / complexity

– Implements Transient / Persistent separation in persistency framework.
• Could use t-p conversion as locus for scatter / gather to allow on demand retrieval of objects

– Rather than sending complete events, the persistent state of objects can be send.
– Persistent state representations are much simpler than their transient counterparts.

– Have dedicated processing of in-file metadata attached to Reader and/or Writer

• To Be Addressed:
– Event ordering

• Multi-core processed file may not preserve the event ordering of input files.

– Removing any duplicate events

1105/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

Summary

• ATLAS uses AthenaMP to utilize multi-core processors
– Works today
– Very process focused

• I/O more of an afterthought
– Currently limited to merging output files

• I/O becoming bottleneck:
– Even for reconstruction up to 20 – 30 % wall clock time in merge– Even for reconstruction up to 20 – 30 % wall clock time in merge
– Increases memory foot print by several 100 MB per core

• Program of work needed to parallelize I/O for multi-core processor
– Several design alternatives should be investigated
– Emerging I/O capabilities in GaudiParallel should be used for Athena (if it makes sense).

• Of course differences between Gaudi and Athena mean there is work to do on our end

• Design of multi-core I/O needs to be highly configurable to allow performance
tuning.
– Expect multi-core I/O performance tuning to be a significant effort

• Similar to single core I/O tuning or (multi-core) memory/CPU optimization.

1205/13/2010 Peter van Gemmeren (ANL): I/O challenges for HEP applications on multi-
core processors

