Neutrino Experiment Physics Goals and Detector Challenges

Regina Rameika Fermilab Workshop on Detector R&D 7-9 October 2010

Elements of the Talk

- Review of the current state of detectors and upgrades
- What drives the upgrades?
 - Machine improvements?
 - Component degredation
 - Newer technologies?
- What are the "pie-in-the-sky" technology choices that would leverage qualitatively new physics? Is there effort in those directions?
- What are the time scales?
- What should be the focus now, in the near future and the far future to meet the experiment's goals

Outline

- Neutrino Overview
 - Broad range of neutrino energies → lot's of detection techniques
 - Lot's of detectors that I don't have time to discuss
 - Focus on detectors for accelerator produced neutrinos
 - Past, present and future detectors
- Neutrino Challenges
 - Low event rates \rightarrow large detectors
 - − Large detectors → course granularity
 - − Course granularity → low efficiency, high background
 - High efficiency, low background \rightarrow \$\$\$
- Detectors for LBNE ($V_{\mu} \rightarrow V_{e}$ FNAL \rightarrow DUSEL)
 - Physics goals
 - Favored technologies
 - Status of design, project status, timescale
 - Major Challenges

Diversity of Neutrino Physics

Solar neutrinos

Atmospheric neutrinos

Reactor neutrinos

Supernova neutrinos

Accelerator neutrinos

Geoneutrinos

Neutrino Energies

- These neutrinos have a broad range of energies
 - Geo : < 3.5 MeV
 - Reactor : 1 10 MeV
 - Solar : < 20 MeV</p>
 - Supernova : 1 50 MeV
 - Atmospheric : 5 MeV ~100 GeV
 - Accelerator : ~1 ~100 GeV
 - UHE : 1 GeV 100 PeV
- The neutrino energy dictates the ways the neutrinos will interact and hence become detectable

The Neutrino Interaction

Invented to explain energy non-conservation in betadecay

$$n \rightarrow p + e^+ + V_e$$

Neutrino Detection

Neutrino Flavors & Interactions

High Energy topologies

The Challenge Neutrino Cross sections are small

Figure 39.10: σ_T / E_{ν} , for the muon neutrino and anti-neutrino charged-current total cross section as a function of neutrino energy. The error bars include both statistical and systematic errors. The traight lines are the averaged values over all energies as measured by the experiments in Refs. [1-4]: = 0.677 ± 0.014 (0.334 ± 0.008) × 10⁻³⁸ cm⁻³⁸ cm⁻

$N_{v}(E) = \Phi_{v}(E) \times \sigma_{v}(E) \times N_{tgt} \times \mathcal{E}(E)$

Diversity of Neutrino Detectors

Neutrino Detectors

- Key Properties
 - − Target Mass → # of interactions produced
 - − Particle ID, efficiency → # of interactions *detected*
 - Energy, momentum measurement
 - Vertex resolution
- Key Feature
 - Monolithic
 - Generally a single target media and single detection technique
- Focus on those detectors that we build to see the direct by-products of the primary interactions
 - Not the indirect detection via cascades and delayed coincidence (i.e. Reines and Cowan)

Tracking Calorimeter (+ Magnetic tracking)

Newer detectors using this technique : MINOS Minerva

Proposed detectors to use this technique : INO Neutrino Factory Study

Liquid scintillator tracking calorimeter

Ring imaging particle ID

3-d imaging : Bubble chamber

Gargamelle Bubble Chamber

1st detection of a NC interaction

3-d imaging : Emulsion

Detection Technique for OPERA

3-d imaging : Liquid Argon

ArgoNeuT

Location: Fermilab Active volume: 0.0003 kton Year of first tracks: 2008 First neutrinos: June 2009

Detector Summary

- Tracking Calorimeters
 - Target material
 - Steel
 - Carbon,lead, scint,water,He...
 - Tracking detectors
 - Gas tubes
 - Liquid scintillator
 - Solid scintillator

- Ring Imaging
 - Target materials
 - Water
 - Scintillator
 - Mineral Oil
 - Active detectors : PMT's
- 3-d Imaging
 - Bubble Chambers
 - Emulsion
 - Liquid Argon

Common characteristics : Simple, monolithic Target Material and Radiation Detectors Where we've been and where we're going

Neutrino History

- 1956 1st detection of V_e via delayed coincidence in liquid scintillator
- 1962 detection of V_{μ} in an Fe-spark chamber tracking detector
- 1973 discovery of neutral currents in the Gargamell bubble chamber
- 1987 detection on neutrinos from SN1987a in water cherenkov detector
- 1998 detection of V_{τ} in emulsion
- 1998 discovery of neutrino oscillations in water cherenkov detector

World Tour 2010

- US Fermilab
 - MINOS, Minerva : solid scintillator-Tracking calorimeters
 - MiniBooNE : Mineral Oil Ring Imaging
- Europe Gran Sasso Lab
 - Opera (3d-emulsion+spectrometer)
 - ICARUS (3d-liquid argon)
- Japan JPARC/Kamioka
 - Super-K/T2K : Water Cherenkov Ring imaging
 - T2K near : fine grained trackers, water target
- South Pole
 - Ice Cube : Large area tracking with PMTs

Apologies if I missed an experiment.....

Near Term

Commissioning, construction, design

- US/Canada
 - NOvA : 15-kT scale, liquid scintillator, WLS fiber/ apd readout
 - MicroBooNE : 100-ton scale, liquid argon, TPC's
 - SNO+: kiloton scale, liquid scintillator, PMT's
- Europe and Asia
 - Double Chooz
 - Daya Bay
 - Reno

Reactor Experiments For theta13 Scintillator/PMT baseddelayed coincidence techniques What are the current physics questions being addressed by present and future neutrino experiments?

- Neutrino Mass and Mixing
 - –What is the value of the third mixing angle, θ_{13}
 - -If $\theta_{13} \neq 0$, what is the value of δ_{CP}
 - -What is the neutrino mass ordering
 - –Precision Measurements of θ_{23} and Δm_{23}^2
 - -Is θ_{23} maximal

What are the current physics questions being addressed by present and future neutrino experiments?

- Neutrino Anomalies
 - Low energy excess of electron-like events in MiniBooNE
 - $-\overline{v}_{e}$ appearance in MiniBooNE anti-neutrinos

 $-v_{\mu} and \overline{v_{\mu}}$ differences in MINOS

• Supernova Watch

Current state of knowledge

Δm_{12}^2	$7.59 \pm 0.02 \times 10^{-9} eV^{-2}$
Δm^2_{23}	$2.43 \pm 0.13 \times 10^{-3} eV^2$
$\sin^2 2\theta_{12}$	0.87 ± 0.03
$\sin^2 2\theta_{23}$	> 0.92
$\sin^2 2\theta_{13}$	<0.19 (90% <i>CL</i>)

θ_{13} Experiments

- Reactors
 - Double Chooz
 - Daya Bay
 - Reno
- Accelerator Beams
 - Т2К
 - NOvA

 θ_{13} : phenomenology, present status and prospect", Mauro Mezzetto and Thomas Schwetz, ArXiv:1003.5800v1 [hep-ph] 30Mar2010

Beyond θ_{13}

- If is not too small $(\sin^2 2\theta_{13} \cong 0.01)$ or larger a next generation of experiments can tackle some new questions in the neutrino sector
- This next generation of experiments have been discussed in the US, Japan and Europe
- All require upgraded beam capabilities and massive detectors

Beyond θ_{13}

- In 2008 initiated the process of preparing CD-0 (Mission Need) documentation for a Longbaseline neutrino experiment in the US
- A CD-0 for LBNE was issued in January 2010
- An analysis of alternatives for source and detector lead to the development of the conceptual design of the LBNE project

A new neutrino beam at Fermilab

A deep underground laboratory

Very Large Detectors

LBNE, LArTPC, 300L – 800L Plan

ONGSECTION OF THE HOMESTAKE MIN

Homestake DUSEL

Underground Physics Lab Layout

LONGSECTION OF THE HOMESTAKE MIN

LAr20 Membrane Cryostat interior

Figure. Roof nozzle penetration

Person

Figure. Membrane Cryostat for LNG ship tanker. This tank is 35 m high x ~45 m wide, 40,000 m³. LAr20 will be 16 m high x 16 m wide x 74 m long 19.000 m³

scale

Source: GTT & Russ Rucinski

Why 2 technologies?

Detector options for LBNE

LAr mass is chosen to match the performance of the WC

Physics goals would like to require 2 100kT WC EQUIVALENT detectors

Plots by Lisa Whitehead, Brookhaven National Lab

Detector Comparisons

- Water Cherenkov
 - Proven technology
 - Needs to be deep(>1000m w.e. for beam)
 - Low efficiency for e (~10-20%) in the few
 GeV region (to keep
 NCpi0 background low)
 - Leads to the large mass requirement

- Liquid Argon
 - Developing technology
 - Should be able to operate at shallow depth
 - High efficiency for e
 (70-80%), good
 (excellent?) background
 rejection for e/pi0
 - Allows for the smaller mass requirement

Major Challenges

- Water Cherenkov
 - Very Large
 - Unprecedented civil construction
 - Unprecedented PMT procurement
 - Depth → pressure on PMTs
 → glass strength or protection....
 - High Cost
 - Conventional Construction
 - PMTs

- Liquid Argon
 - Achieving purity in LAr
 - Large volume → long drift
 - Would like to not have to evacuate the large volume cryostat
 - Developing low cost, low noise electronics (650K channels)
 - Understanding the cost
 - Appears to be less expensive than water (for equivalent physics) but needs to be proven
 - Driven by smaller caverns

PMT's

50,000 10" High Q.E. tube; standard QE tube → ~65,000 Cost-benefit analysis

Unit cost ~ \$1 – 2 K

Liquid-Argon Time Projection Chambers Status of R&D Program in the US

The first **TPCs in** the United States:

Location: Yale University Active volume: 0.00002 kton Year of first tracks: 2007

Luke

Location: Fermilab

Location: Fermilab Active volume: 0.00002 kton Year of first tracks: 2008

ArgoNeuT

Location: Fermilab Active volume: 0.0003 kton Year of first tracks: 2008 First neutrinos: June 2009

MicroBooNE

Location: Fermilab Active volume: 0.1 kton Start of construction: 2010

Test stands to improve liquid-argon technology:

LAPD

Location: Fermilab Purpose: materials test station Purpose: LAr purity demo Operational: since 2008 Operational: 2010

What to do NEXT to prove that we can build a 20kT module?

Project Milestone Schedule through Construction

DuRA Meeting, 2 September 2010

Homestake DUSEL

LBNE Milestones/Timeline

- Department of Energy CD-0
 - January 2010
- CD-1 Review and Approval
 - January-May 2011
- CD-2 (Cost and Schedule Baseline) – 2013
- CD-3 : Start Construction!
 2015
- CD-4 : Start Operations !
 2020-2021 (if all goes well)

Timing Dilemmas

- We need cost estimates and resource loaded schedules for CD-1 → NOW
- Puts pressure on the project teams to do a technology selection as soon as possible
 - Difficult to demonstrate capability and feasibility of LAr
- Long lead procurement (6-8 yr delivery schedules) → we would need to place orders for PMT's shortly after CD-2
 - → difficult to imagine a scenario of waiting for a newer, cheaper technology

Considerations about detector development/evolution

- We need to make technology choices for our program than we will be running in the 2020 decade
- We are planning to make a ~\$1B investment in this program
- We expect it to operate, in some fashion, for >> 10 years
- Investment in new technologies for detection of neutrinos and other rare phenomena should be a high priority

Conclusions

- Neutrino physics employs a diverse suite of detector technologies
- Future accelerator based neutrino detectors need to be large
 - High detection efficiency can mitigate the size
- For some physics topics the size shouldn't be compromised, so cost reduction of the instrumentation is key

Backup Slides

A quick lesson in "Project Speak"

- New Department of Energy Project's must pass through a "Critical Decision" process : CDs
- CD-0
 - Approval to do conceptual design
- CD-1
 - What can you do, and for how much \$\$? When could you do it?
- CD-2
 - How much does it *really* cost and how long will it *really* take?
- CD-3
 - What are you really going to build and are you really ready to build it?
- CD-4
 - Does it work? Did we get what we paid for?

Membrane Cryostat

Stainless steel primary membrane
 Plywood board
 Reinforced polyurethane foam
 Secondary barrier
 Reinforced polyurethane foam
 Plywood board
 Plywood board
 Bearing mastic
 Concrete covered with moisture barrier

Cold Electronics

Power ~ 10mW/channel Cost = \$3.5M design & prototyping + \$5/channel (including ASICs, boards, feedthroughs)

Anode Plane Assembly (APA)

