Intensity Frontier Experiments and Challenges

W. Molzon, UC Irvine Workshop on Detector R&D Fermilab October 7-9 2010

Physics of Interest

• Rare decay/process – searches for physics beyond Standard Model

 $-\mu^+ \rightarrow e^+\gamma, \ \mu^- N \rightarrow e^-N$

- Search for muon and electron number violation in charged sector
- Sensitive to many extensions to the Standard Model supersymmetry, multiple Higgs doublets, ETC, horizontal gauge bosons, lepto-quarks

− K_L→ $\pi^0 \nu \overline{\nu}$, K⁺→ $\pi^+ \nu \overline{\nu}$

Also a search for new physics – e.g. SUSY loop contributions to FCNC decay amplitudes

High precision measurements

- g-2 of the muon

- Small corrections to anomalous magnetic moment of muon in diagrams with loops containing new particles
- Sensitive to similar new physics contributions as CLFV experiments, but without flavor violation, e.g. supersymmetry

Concentrate on charged lepton flavor violation experiments

- μ⁺ → e⁺γ

- ongoing experiment [MEG]
- limited by detector performance
- examples of detector choices
- μ⁻ N → e⁻N
 - being actively developed at both Fermilab [mu2e] and JPARC [COMET]

October 7, 2010

Detector Choices Correlated with Beam Properties

- Experiments use very intense beams, often with particular time structure
 - Very low energy muon beams for $\mu^+ \rightarrow e^+ \gamma$
 - Uses positive beam, can exploit decays of pions at rest *surface muon beam* of 29 MeV/c
 - DC beam to reduce instantaneous rates
 - Negative muon beam with very high intensity for muon conversion
 - Large μ /p ratio needed
 - For reasons of background suppression, beam pulsed at ~ 1 MHz
- Beam contamination by electrons and muons is a source of backgrounds with which detectors must deal
 - Primarily detector rate issue for $\mu^+ \rightarrow e^+ \gamma$
 - Both physics background and detector rate issue for $\mu^- N \rightarrow e^-N$

Demands on Detector Systems

- What precision is needed in measured quantities?
 - Low level quantities (time, charge, pulse shape in individual detectors)
 - High level quantities (particle time, momentum, position...)
 - Typically driven by issues of background rejection
 - Often tension between measurement precision and detector material (multiple scattering, energy loss in detectors)
- At what rates must detector elements operate?
 - Driven by acceptances, desired sensitivity, background/signal
 - May be limiting factor in experimental sensitivity
 - Some of highest detector rates in operating experiments have been in intensity frontier experiments (e.g. K_L→μe)
- At what rates must information be digitized, recorded in static memory?
 - Hardware selection: reduce digitization rate, perhaps loss of efficiency
 - Digitize more, higher digital data bandwidth, perhaps increased flexibility
 - Where is data processing and selection done
 - Non-programmable hardware
 - Programmable hardware (FPGA, PLU)
 - Conventional computers

October 7, 2010

<u>Principal Features of $\mu^+ \rightarrow e^+ \gamma$ Experiment</u>

- Stop μ^+ in thin target
 - Measure energies of e^+ (E_e) and γ (E_y)
 - Measure angle between e^+ and γ ($\Delta \theta$)
 - Measure time between e^+ and γ (Δt)
- Main source of background:
 - Accidental coincidences of
 - e^+ from Michel decay ($\mu^+ \rightarrow e^+ \nu_e \nu_\mu$ random γ from rad. decay or annihilation in flight
 - E, distribution rises ~linearly from endpoint
 - E_{e}^{i} distribution peaks at (x = E_{e}/E_{max} = 1)
 - background/signal $\propto \Delta E_{e} \times (\Delta E_{\gamma})^{2} \times \Delta t \times (\Delta \theta)^{2} \times Rate$ \Rightarrow signal sensitivity \propto acceptance \times Rate
 - Must minimize resolution in all measured quantities, maximize acceptance
 - Tails in angle, time, positron energy resolution primarily represent loss of acceptance, tails in photon energy resolution affects background

Previous Experience and MEG Goal

- Two primary ways of measuring photon energy:
 - Calorimetric (Crystal Box, MEG)
 - Limited by resolution of calorimeter
 - Large solid angle
 - Possibly poor photon direction measurement
 - Pair produce, measure e⁺e⁻ energy (MEGA)
 - Low acceptance due to thin convertor to reduce energy loss – high rates
 - Very good resolution possible

Exp./Lab	Year	$\sigma_{\sf RMS}$ Resolutions				Stop rate	Duty cycle	BR
		E _e [%]	Ε _γ [%]	∆t _{eg} [ps]	$\Delta \theta_{eg}$ [mrad]	[MHz]	[%]	(90% CL)
SIN (PSI)	1977	3.7	4.0	590	-	0.5	100	3.6 x 10 ⁻⁹
TRIUMF	1977	4.3	3.7	2900	-	0.2	100	1 x 10 ⁻⁹
LANL	1979	3.7	3.4	810	16	0.24	6.4	1.7 x 10 ⁻¹⁰
Crystal Box	1986	3.4	3.4	550	37	0.4	(6.9)	4.9 x 10 ⁻¹¹
MEGA	1999	0.51	1.9	610	7	250	(6.7)	1.2 x 10 ⁻¹¹
MEG prop.	2002	0.38	1.7	64	8	30	100	1 x 10 ⁻¹³

Intensity Frontier Experiments and Challenges

MEG Detection Technique

- Original LOI from 1998 (PSI-RR-99-05), proposal in 2002 with goal 10⁻¹³
- Muon stop rate of $\sim 3 \times 10^7$ (much lower instantaneous rate than MEGA)
- Detect photon calorimetrically with liquid xenon scintillation calorimeter
 - Energy resolution 1-2%
 - Timing resolution <60 ps
 - Position resolution \sim 5 mm
 - Modest solid angle of ~10% (cost)

- Measure positron momentum with magnetic spectrometer, time with plastic scintillator detector
 - Momentum resolution $\sim 0.4\%$
 - Angle resolution ~ 9 mrad
 - Time resolution ~ 50 ps
 - Acceptance matched to calorimeter
- Significant detector development went into the experiment

Magnetic Spectrometer Design

- 16 drift chambers, each 2 layers, 9 cells per layer
- Operated with $He-C_2H_6$ in He atmosphere to reduce multiple scattering
- Gas containing foils also serve as cathode pads
 - Requires δP across foils to < 0.1Pa
- Radial position from drift time
- Resistive wires for approximate Z by charge division, pattern etched on cathode pads to interpolate Z
- Calculated chamber-to-chamber scattering error equivalent to 300 µm
- Goal: $\sigma_{\rm P}$ = 200 µm $\sigma_{\rm Z}$ = 300 µm

Liquid Xenon Calorimeter

- Relatively high light yield
- No self-absorption of scintillation light: attenuation only from impurities
- ~1000 I liquid xenon (largest LXE volume)
- 860 mesh phototubes on surface, in LXE
- Thin window to reduce photon conversions
- Goal is to measure photon properties:
 - Position: σ_{RMS} = 5 mm
 - Time: σ_{RMS} = 50 ps
 - Energy: σ_{RMS} = 1.2 MeV at 52 MeV

Density	2.95 g/cm ³
Boiling and melting points	165 K, 161 K
Energy per scintillation photon	24 eV
Radiation length	2.77 cm
Decay time	4.2, 22, 45 ns
Scintillation light wave length	175 nm
Scintillation light absorption length	> 100 cm
Attenuation length (Rayleigh scattering)	30 cm
Refractive index	1.74

Timing Counter Design

- Primary purpose is trigger and precise measurement of positron time
- 2 layers: 15 constant-φ bars, 128 constant-z fibers at each end
- Bars used for timing, R-φ position, approximate Z position
 - -~4x4 cm², 60 cm long
 - phototube readout with waveform digitizers
- Fibers used for precise z coordinate
 - 5x5 mm², cover ~ π /3 in ϕ ,
 - APD readout with waveform digitization
- Goal: σ_t = 40 ps
- Correct time for track path to < 1 cm

Readout Electronics

- All channels recorded in waveform digitizers (~3500 channels)
- Custom built sampling chip (Domino Ring Sampling)
 - 2.5 GHz sampling rate (operated at 500-700 MHz for drift chambers)
 - Sampling depth 1024 bins
 - < 40 ps timing jitter
 - 10 bit FADC (33 MHz, multiplexed 8:1)
 - Onboard calibration
 - Multiple versions, now using DRS4: internal time and charge calibration, improved temperature performance

Current MEG Detector Performance

- MEG at PSI is currently collecting and analyzing data
 - MEG resolutions (σ_{RMS})

Quantity	<u>Proposal</u>	<u>Current</u>	
• E _e	0.35	~0.7	%
• E _y	1.7	~2.8	%
• Δ θ _{ev}	4-5	~12	mrad
• $\Delta t_{e\gamma}$	65	~160	ps

 Expected (proposal) background ~5x10⁻¹⁴ at stop rate 3x10⁷ Currently worse by factor Compensation coil COBRA magnet Ubstruction LXe photon detector Drift chamber Timing counter

 $(0.7/0.35) \times (2.8/1.7)^2 \times (14/8)^2 \times (160/65) = 100$

- Expected background near 5 x 10⁻¹²
- Preliminary results from 2009 data $B(\mu^+ \rightarrow e^+ \gamma$) <1.45 x 10^{-11}
- Significant improvements in performance needed to reach goal

Coherent Conversion of Muon to Electrons (μ -N \rightarrow e-N) – mu2e, COMET

- Muons stop in matter and form a muonic atom.
- They cascade down to the 1S state in less than 10⁻¹⁶ s.
- They <u>coherently</u> interact with a nucleus (leaving the nucleus in its ground state) and convert to an electron, without emitting neutrinos $\Rightarrow E_e = M_{\mu} E_{NR} E_B$.
- Experimental signature is an electron with E_e =105.1 MeV emerging from stopping target, with no incoming particle near in time.
- More often, they are captured on the nucleus: μ (N,Z) $\rightarrow \nu_{\mu}$ (N,Z-1) or decay in the Coulomb bound orbit: μ -(N,Z) $\rightarrow \nu_{\mu}$ (N,Z) ν_{e} (τ_{μ} = 2.2 μ s in vacuum, ~0.9 μ s in Al)
- Rate is normalized to the kinematically similar weak capture process:

$$\mathsf{R}_{\mu e} \equiv \frac{\Gamma(\mu^{-}\mathsf{N} \rightarrow e^{-}\mathsf{N})}{\Gamma(\mu^{-}\mathsf{N} \rightarrow v_{\mu}\mathsf{N}(\mathsf{Z}-1))}$$

Goal of new experiment is to detect μ -N \rightarrow e-N if R_{μe} is at least 2 X 10⁻¹⁷ with one event providing compelling evidence of a discovery.

Detector Challenges for Muon Conversion Experiment

- Detector single channel rates and dynamic range few x 10⁵ Hz during signal period
 - Flash shortly after pulsed beam strikes production target electrons
 - Protons (highly ionizing), photons, neutrons from nuclear de-excitation following muon capture
 - Tail of decays of muons in Coulomb bound orbit
 - Use geometry of detectors to mitigate problem
- Physics background rejection
 - Signal is isolated 105 MeV electron consistent with originating in muon stopping target
 - Background from variety of sources
 - High energy tail of muon decay in orbit electron spectrum
 - Electrons from beam sources muon and pion radiative capture
 - Cosmic ray induced backgrounds
 - Detectors to reduce backgrounds

- Sufficient redundancy to reduce high energy tails in momentum resolution to acceptable level
- · Calorimetric detector to provide confirmation of energy, time, position of spectrometer trajectory
- Operating environment
 - Detectors in vacuum not easily accessible, issues of cooling, breakdown of HV
 - Detectors must operate both in vacuum and at ambient pressure during development
 - Detectors are in high magnetic field, space is expensive
- Data rates
 - Few x 10^4 detector channels operating at few x 10^5 Hz

Example of Rate Environment [MECO]

time with respect to proton pulse [ns]

• Very high rate from beam electrons at short times – potential problems with chamber operation

• Protons from μ capture are very heavily ionizing – potential problems with noise, crosstalk

<u>Tracker R&D for $\mu \rightarrow e$ Conversion</u>

- Tracker requirements from rate, resolution
 - Resolution dominated by energy loss and scattering
 - Rate is dominated by muon capture secondaries and by decay in orbit [DIO]
 - Central resolution function affects dominant background from DIO proportional to σ_{F}^{6}
 - Tails in resolution function could result in increased background
- Two rather different geometries possible
 - Axial straw elements good geometry, measurement points concentrated, few straws
 - ~2500 straws $r\phi$ resolution 200 μm
 - 8 vane and octant modules, 3 layers per module
 - 17000 cathode pads for axial coordinate (1.5 mm σ)
 - Space point by correlating anode and cathode
 - · Manifolds, wire support in active area
 - Long straws (~2.6 m) intermediate wire supports
 - Transverse straw elements no support or readout material in active region, short straws
 - 22000 straws
 - 18 stations x 2 planes x 6 panels with hexagonal geometry
 - Double layer per panel for L/R resolution
 - Space point from stereo reconstruction aided by anode time division for position along wire

Axial Geometry Tracker R&D Challenges

Mechanical

- Maintain wire position within straw to $\sim 100 \ \mu m$
 - 2 intermediate spiral wire supports reduce mass, volume for acceptance
- Support structure in space
 - Link modules to maintain geometry
 - Provide axial tension at ends gas pressure exceeds wire tension when operating
 - Minimize support material react gravity, axial tension to external frame with carbon fiber in tension
- Gas tight construction, 6000 m, 4800 connections to manifold with 150 per module end
- Support of cathode foils
- Allowing for foil stretching under tension allow one end to float axially?
- Straw materials
 - Resistive material for outer straw layers
 - Axial voltage drop in straw due to cathode current
- Readout
 - 2400 vacuum electrical feed-throughs, module to solenoid volume
 - Low-mass strip-line cable for anodes and cathodes in active volume
 - Decouple HV in manifold or at preamp location outside active region?
 - Method to isolate broken wire fused (ATLAS)
 - Preamp in manifold or outside active region?
 - 19000 vacuum electrical feed-throughs if digitizing outside detector solenoid vacuum
- Analysis
 - Pattern recognition and fitting robust: cathode-anode correlation (charge, time, tracking)

Transverse Geometry Tracker R&D Challenges

- Mechanical
 - Maintain straightness of single, unsupported straw to ~100 μm
 - Allowing for foil stretching under tension
 - Tension straws to allow operation at 0, 10⁵ Pa gauge pressure (thin straws)
 - Gas tight construction, 18000 meters, 44000 connections to manifold with 100 per module end
- Straw materials
 - Use of thinner straws desirable central part of position resolution function limiting with 25 μm straws recall background proportional to $\sigma_{\rm E}{}^6$
- Readout
 - 44000 vacuum electrical feed-throughs, module to solenoid volume (or digitize in manifold)
 - Method to decouple broken wire fused
 - 44000 vacuum electrical feed-throughs if digitizing outside detector solenoid vacuum
 - Time difference on anode wire ends sub-ns resolution in time difference to be useful
- Analysis
 - Non-local position information (helped by time division)

Straw Material

- Conducting with aluminum or copper on substrate
 - Polyester (mylar) non-conducting, spiral wound
 - Polyimide (kapton) non-conducting, spiral wound
- Straw material resistive
 - Spiral wound carbon loaded polyimide
 - Double wrap with one 25 μm carbon loaded layer, one thinner layer without carbon
 - Possibility of thinner carbon loaded material
 - Problems with variations in resistivity batch to batch
 - PEEK(PolyEther-Ether-Ketone) (30 µm)
 - Good mechanical strength and radiation tolerance
 - Thermoplastic extrusion -> potential to make long tube
 - Proprietary process of forming seamless tubes on a mandrel
- Maintaining straightness
 - Axial tension
 - Support with close-packed arrays
- Expansion under gas pressure (10⁵ Pa)
 - Can linear or 2 dimensional arrays be close packed and glued or is space needed for expansion under gas pressure?
- Creep under long-term tension

Recent Tests of Close-Packed Array Mechanical Properties

- Early work on long straws [MECO, Houston]
- Recent measurements done at Fermilab [Krider et al.]
- Gluing straws in close packed array significantly reduces deflection under gravity
- Tests done without gas pressure, with three layer, closepacked and glued array
- Axial tension further reduces deflection comparable to tension from gas pressure

Cathode Pad Resolution with Resistive Straws (Osaka University)

- Required resolution in Z ~1500 μm
- PEEK seamless and carbon loaded kapton spiral wound straws tested
- Measured resolution exceed requirements 300 to 600 μm depending on resistivity
- Tests also done with aluminum conducting trace for cathode current
 - Conducting strip reduces induced charge, sharpens distribution across pads

22

Reducing Straw Mass

- Yield strength of kapton(mylar) limited by hoop force and 10^5 Pa to ~15(6) μ m
- Metalization: copper inside (cathode), aluminum outside (diffusion) to reduce mass
- Reduces radiation lengths a factor of 3 with respect to 25 μm
- Issues with metalization of very thin material
- Probably want to operate with zero overpressure for tests straws must not collapse under gravity
- Not yet demonstrated that very thin material can be wound into straws

	Key		Density		Mass		M/X _o /V _{tot}	
Component	Dimension		(g/cm ³)	Area (cm²)	(g/cm)	$X_0 (g/cm^2)$	(cm ⁻¹)	
Kapton/Mylar	6.25	$\mu_{\mathbf{m}}$	1.4	9.82E-04	1.37E-03	40.00	1.75E-04	53.6%
Copper	300	Å	9	4.71E-06	4.24E-05	12.90	1.67E-05	5.1%
Aluminum	1200	$\mu_{\mathbf{m}}$	2.699	1.88E-05	5.09E-05	24.01	1.08E-05	3.3%
W (20 ^μ m)	25	$\mu_{\mathbf{m}}$	19.3	4.91E-06	9.47E-05	6.76	7.14E-05	21.9%
Argon	50	%	0.0007595	1.96E-01	1.49E-04	19.55	3.88E-05	11.9%
Ethane	50	%	0.00063	1.96E-01	1.24E-04	45. 66	1.38E-05	4.2%
Total (one straw)				1.96E-01			3.27E-04	

Calorimetric Measurement of Electron

- Confirmation that electron trajectory has associated energy deposition in time and in spatial coincidence
- Used as an event selection tool before events recorded to non-volatile memory
- Significant ambient background premium on fast scintillator
- Geometry peculiar to experiment electrons in helical trajectory with pitch angle of 55°
 - Good position and energy resolution when electrons incident on face opposite photo-detectors
 - Premium on high density minimize areas of front and inner face
- Material choices
 - PbW0₄ fast, shortest radiation length, relatively low light yield
 - BGO high light yield, slow, relatively high density
 - LSO, LYSO high light yield, relatively fast, expensive
- Detector rates from target and muon beam dump

Light Yield for PbWO₄ [MECO]

- $3 \times 3 \times 14$ cm³ PbWO₄ crystals
- Large area (13mm x 13mm) APD from RMD Inc.
- Hamamatsu (5mm x 5mm) APD used by CMS
- Crystal / APD combinations were tested using cosmic rays. The crystals and APDs are cooled.
- Photo-electron yield estimated at 27 pe/MeV per APD when cooled to -24 C
- Newer PbWO₄ with larger light yield

Crystal / APD Test Arrangement

25

Studies of PBWO₄ Performance from Prototype and Simulation

- Signal is 105 MeV electron
 - Range from dE/dx is few cm in dense crystals
 - Can get significant energy loss from albedo and leakage for electrons near edge of calorimeter – low energy tails – GEANT4 studies of LSO crystals [mu2e INFN Frascati]
- Significant R&D done on contributions to energy resolution from all sources [MECO NYU]
 - Photo-statistics using cosmic ray tests
 - Electronics noise using prototype preamps and shapers
 - Pileup from simulation
 - Energy deposition from GEANT leakage, albedo
 - Total resolution with 2 large area APDS ~5%
 - Acceptance losses for detected energy >80 MeV dominated by
 - electrons striking upstream and inner faces
 - Trigger rates rather low (<1 kHz) for thresholds near 75 MeV
- Might benefit from improved photo-statistics, no cooling if if LYSO could be used, but tradeoffs in cost, density

Data Requirements

- Want time and at least some charge information on all channels
 - Time resolution to \sim 1-2 ns in tracking chamber for position resolution
 - Somewhat better time resolution (few 100 psec) for time division in transverse geometry
 - Similar resolution in calorimeter:
 - Correlate track in spectrometer and signal in calorimeter
 - Distinguish forward and backward going tracks
 - Charge information in tracker: modest resolution needed
 - Correlate cathode and anode signals, interpolate Z coordinate from pad charges in axial tracker
 - Distinguish between signals from electrons and heavily ionizing protons or spiraling photon conversions
 - Charge information in calorimeter
 - Resolution down to few percent
- Channel count dominated by tracker
 - Axial geometry ~2400 anodes, 17000 cathodes
 - Transverse geometry ~ 22000 wires, double ended readout
 - Additional few thousand channels from calorimeter and cosmic ray veto system
- Typical rates ~300 kHz per channel

27

Trigger and DAQ

- What information to store for a hit?
 - Time and limited charge information for all hits
 - Reduces bytes of information per hit, continuous digitization and storage of all hits possible
 - Limits flexibility in signal processing, e.g. technique for hit time determination, integration times for charge
 - Provides increased flexibility in event selection, allows use of high level processors
 - Voltage waveform around the region of interest for selected events
 - Provides for flexible signal processing, can optimize sampling rate for each detector (very useful in MEG)
 - Provides most possible information about hits (e.g. pileup at high rates)
 - Probably cannot continuously sample all waveforms event selection prior to digitization required
- How to select events?
 - Digitize all information select events after loading into massively parallel computing farm
 - 120 Gbytes/sec to processor farm possible with fiber transmission
 - Store information in analog form long enough to select events, then digitize waveform
 - Select events using pipelined signals from fast waveform digitizers (e.g. on calorimeter signals)
 - Minimal deadtime if trigger and readout latency is of order 1 usec
- Where to digitize: inside or outside vacuum?
 - Outside
 - Analog signals accessible, minimize space and power constraints on digitizers
 - Large number of (20-50k) analog signal cables through vacuum wall
 - Concern about crosstalk, noise on analog cables
 - Inside
 - Increased amount and complexity of electronics not easily accessible more concern about failure rate
 - Much reduced vacuum signal penetrations through vacuum wall
 - Concern about inducing noise on detectors (e.g. straws) from very high frequency digital signals

Trigger/DAQ with Full Digitized Data Buffer (Streaming Architecture)

- LHCb is close to fully streaming
 Some L0 trigger
- Study of fully streaming architecture [mu2e Fermilab, Berkeley]
- Expect improvements in switches, processing power

Intensity Frontier Experiments and Challenges

Digitization for Fully Streaming DAQ

- Data rates for continuous waveform digitazation at required frequency prohibitive
- Digitizers similar to BaBar ELEFANT and JDEM design being studied [MECO Houston, LBNL; mu2e Berkeley, LBNL]

Additional work on possibility of implementing TDC in FPGAs [mu2e, Fermilab]

Example Trigger/DAQ with Analog Signal Buffer [MEG]

- Trigger in cascaded FPGAs using waveforms digitized in FADCs; latency < 1 μsec
- Analog signals held in ring buffer of capacitors sampling at 0.5-2.5 GHz – fully covers requirement for mu2e
- Data digitization at 33 MHZ by sequentially shifting analog signals to digitizer, multiplexed 8:1- too slow for mu2e
- Modification for higher speed ADCs (100 MHz), not multiplexed

<u>Summary</u>

- Experiments will benefit enormously from increased intensities
- Detector advances critical to realize these improvements
 - Ability to use the increased intensity
 - Improved performance necessary to reduce backgrounds commensurate with improved sensitivity that can be achieved
- The job isn't over when the detector development is done
 - Implementation is likely to be difficult
 - Reality strikes when data is being recorded and analyzed
- In the case at hand, options exist for critical detector components
 - Tracker has multiple geometries in straw chamber implementations
 - Difficult problems in each case
 - Some difficulties can be confronted early, some may be confronted only during commissioning and use
 - Even considerations of a conventional drift chamber [mu2e INFN Lecce] that I did not describe
 - Calorimeter is probably easier in some sense
 - Tradeoffs among different crystals in cost, operational complexity, performance
 - Trigger and DAQ has structural choices
 - Fully streaming vs. analog buffering with short time scale event selection
 - Location of digitizing electronics
- Experiment would benefit from resources to carry R&D farther forward on a number of these issues
 - Largely an issue of financial resources and people