

### Challenges of High Rate and Multiplicity for Tracking and Vertexing

(A summary of known problems and some proposed development)

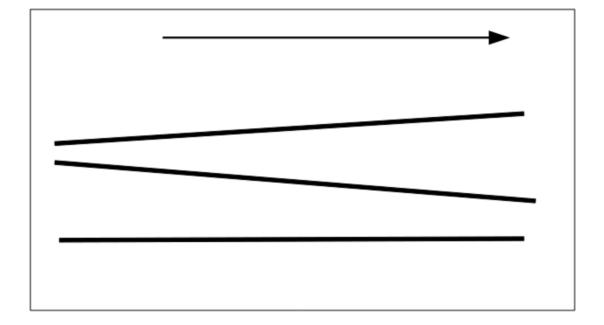
Workshop on Detector R&D Fermilab, 2010

Oct. 8, 2010 High Rate & Multiplicity M. Garcia-Sciveres

### **Overview**



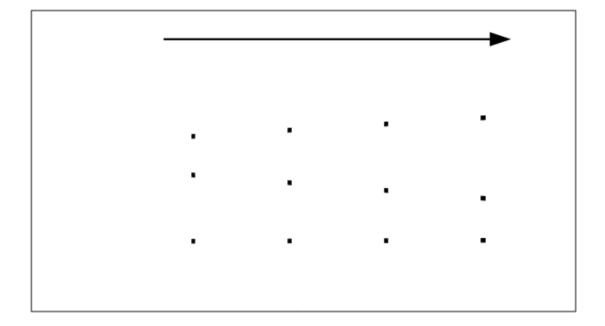
- Problem 1 is high multiplicity AND high rate at the same time
  - Occupancy = fraction of channels busy at an given time


~ multiplicity x rate / (  $N_{ch} \times BW_{ch}$  )

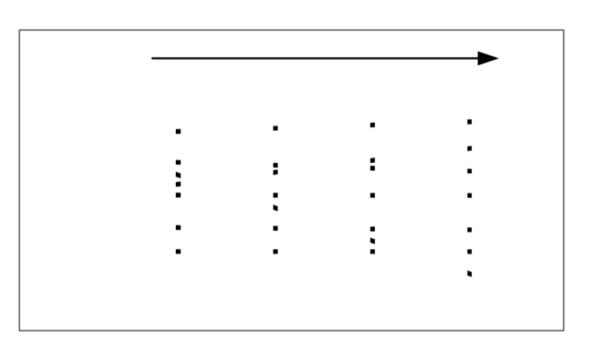
- Need low occupancy (<1%) to resolve individual tracks
- But low occupancy is not enough for finding the correct tracks: sampling density also matters (number of measurement planes)
- Problem 2 is high radiation dose
  - Limits technology choices (along with BW<sub>ch</sub>)
  - Approaching regime where every atom of detector material will be crossed by O(10) MIPs over its lifetime
- Additional problems from performance requirements
  - New capabilities (eg. Trigger)
  - Computational constraints (tracking speed & resources)
  - New colliders with new backgrounds (e<sup>+</sup>e<sup>-</sup> already covered)

 $(Bw_{ch} = data bandwidth of a single channel: how many hits per unit time.)$ 

### Low multiplicity cartoon





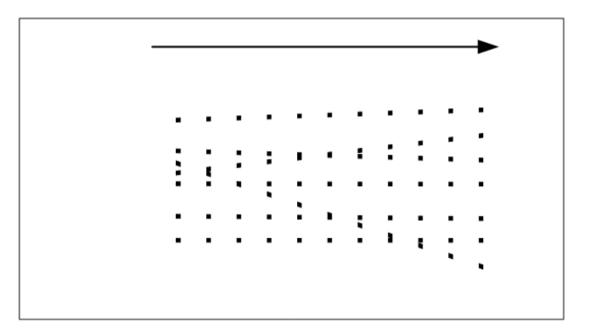


Oct. 8, 2010

### Low multiplicity, sparse sampling





Oct. 8, 2010 High Rate & Multiplicity M. Garcia-Sciveres




Note there is no lack of granularity in each plane. Every hit is resolved.

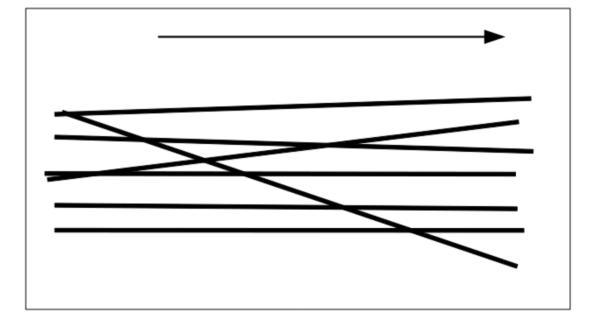
**rrrr** 

BERKELE

### **High multiplicity, more samples**



Now the eye can start to see the tracks


Oct. 8, 2010 High Rate & Multiplicity M. Garcia-Sciveres

**rrrrr** 

BERKELEY

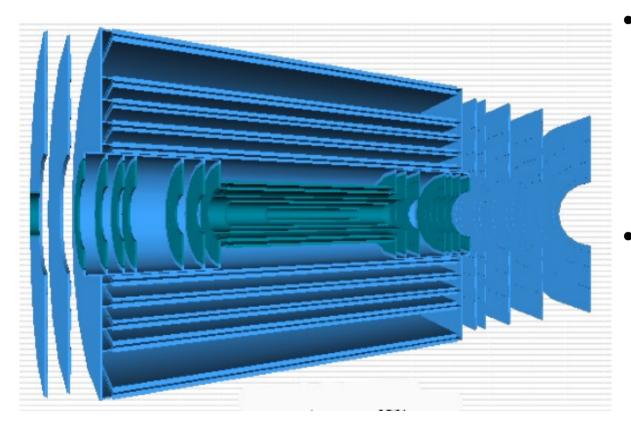
### **Truth tracks**





Oct. 8, 2010 High Rate & Multiplicity M. Garcia-Sciveres

Oct. 8, 2010

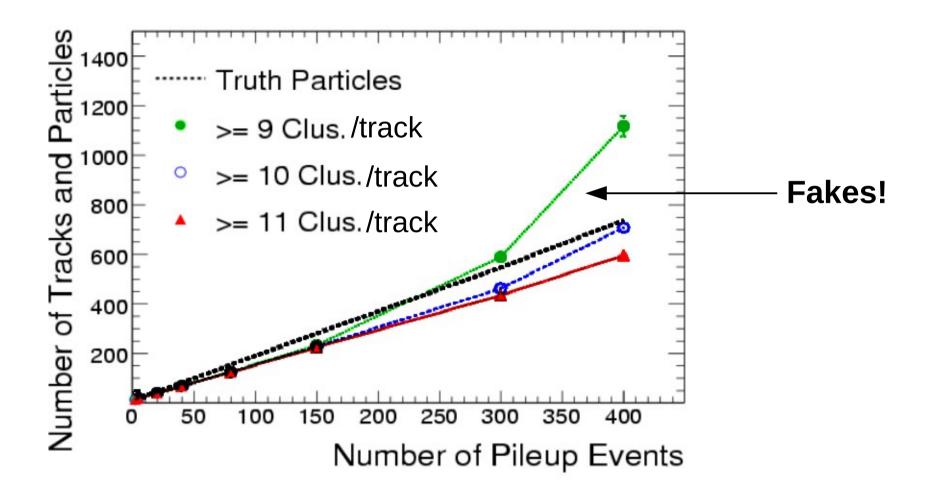

High Rate & Multiplicity

M. Garcia-Sciveres

#### \_\_\_\_\_

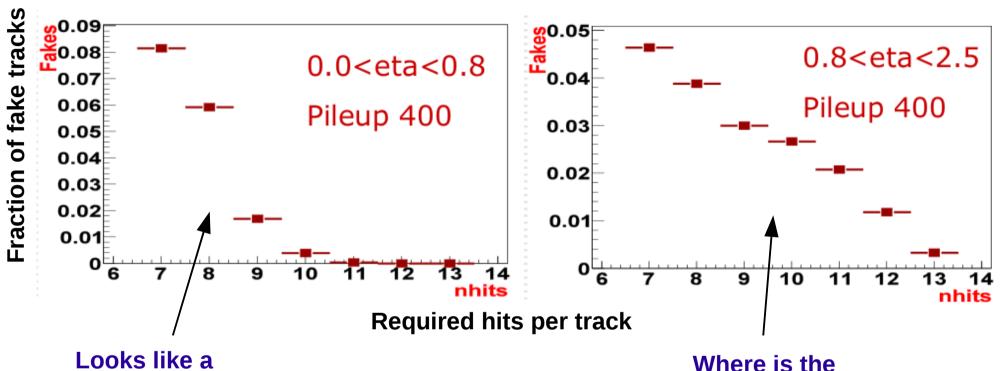
## ATLAS upgrade simulation example

Same study as illustrated by cartoon, but done with GEANT simulation and ATLAS track reconstruction.




- From inside out each layer is pixels, 2.5cm strips, or 10cm strips to keep occupancy below 1% at highest multiplicity
- Multiplicity is varied by changing the number of piled-up minimum bias events.




### Found tracks vs. multiplicity





J-F arguin. B. Heinemann, LBNL

# Need enough hits per track to avoid finding fake tracks



threshold behavior

threshold here?

- More hits per track = more layers
- More layers = more mass
- But more mass = more tracks ! (secondaries)
  - In this layout there is more mass at higher eta.

A. Abdesselam, Oxford

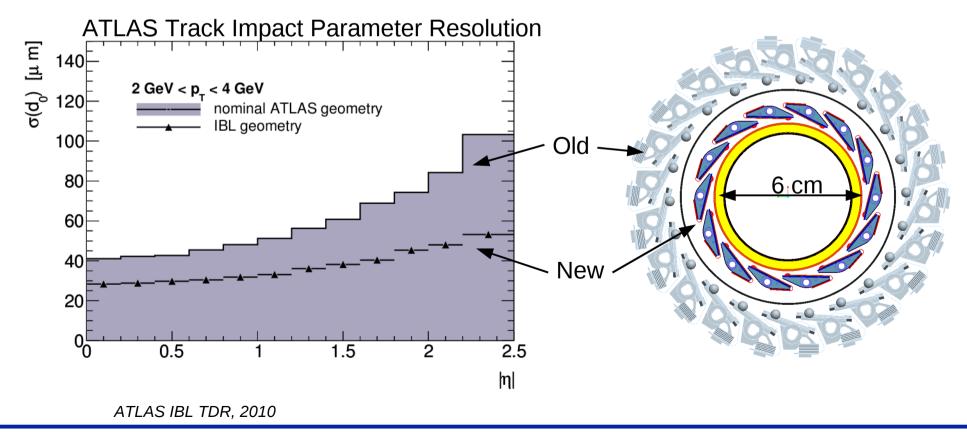
**rrrr** 

BERKELEY



- Lowering mass/layer is not JUST nice for the calorimeters downstream, it is REQUIRED for pattern recognition at high multiplicity
- Theoretical analysis to calculate minimum sampling density needed as a function of multiplicity?

### **Vertex Reconstruction**



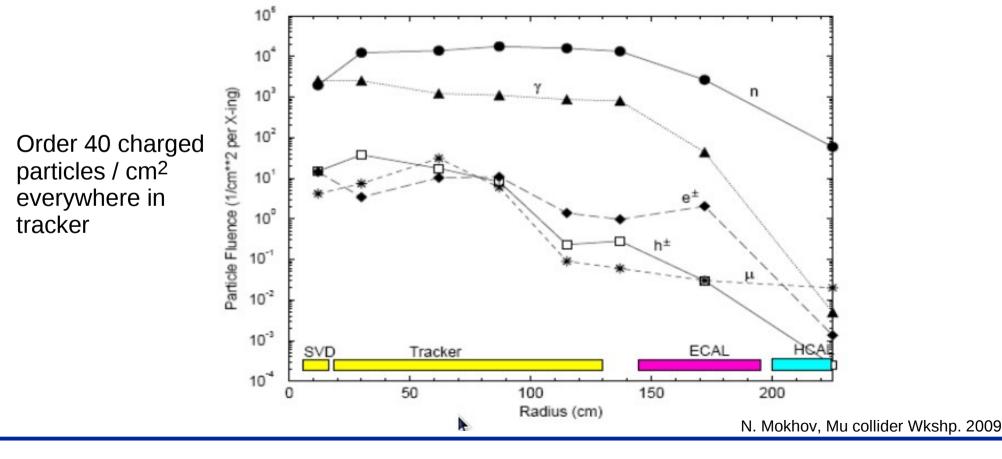

- Specific requirements for e+e- linear colliders covered in dedicated talk
- Vertex finding is based on tracks
- Low track fake rate needed for secondary vertex purity (but no plot to show)
  - Impact of fake rate on secondary vertex tails.
- Main specific requirement is high precision close to IP
- => Extreme radiation environment
  - Main radiation hard challenge lies in inner 1 or 2 layers.
- These layers also have the highest output data rate => challenge for readout bandwidth
- High track projection precision means low mass

### **Impact of inner layer**



- Both Tevatron detectors have a special inner layer with the ultimate technology available at the time.
- ATLAS has "IBL" proposal for new inner layer with newest hybrid pixel technology




Oct. 8, 2010

High Rate & Multiplicity

### **Background dominated case**



- Conditions normally applicable to vertex layers can apply to ALL layers in the case that multiplicity is dominated by noncollision backgrounds.
- Muon collider is the obvious example for now.



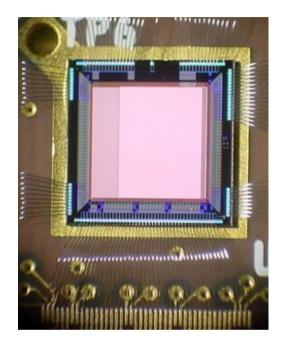
Oct. 8, 2010

High Rate & Multiplicity



- Want special technology for inner layer(s) Lower mass, but also
  - Extremely radiation hard
  - Very high rate
  - Not necessary affordable for rest of the detector in collision dominated case
- Need this technology everywhere in non collision background case
  - Develop inner layer for SLHC and then figure out how to make them cheaply enough for full tracker of muon collider?

### Technology






- Hybrid technology (strips and pixels) combines large denominator with radiation hardness.
  - Presently the only solution for high rate and multiplicity.
- High bandwidth (all channels in parallel) is the key.
- Challenges: high bandwidth = power large  $N_{ch}$  = cost
- Higher granularity technologies are not presently very radiation hard, but even if they were can't compete with hybrid pixels due to significantly lower bandwidth.
- Perhaps could compete with strips however, because while the bandwidth is lower,  $N_{ch}$  is very much higher.

## Monolithic Active Pixels on SOI with reverse biased bulk





After Thinning SOI sensor to 50 μm and adding P implant in backplane via LBNL low-T process:

#### LDRD-SOI-2 back-illumination with 850 nm laser $V_{dep}$ = 2 V, D ~ 17 $\mu$ m 2V 1000<sup>.</sup> 800 600<sup>-</sup> $V_{dep} = 15 V, D \sim 56 \mu m$ 400<sup>-</sup> 200-**15V** 500-787674727068666462 18 20 22 24 26 28 30 5 400-300-200-100-747270686666462 18 20 22 24 26 28 30 32 34 36 38

#### Rad hardness approaching 1 MRad

D. Contarato, SOI coll. Mtg. 2010; M. Mattaglia, et. al., JINST 4 P04007

Oct. 8, 2010

High Rate & Multiplicity

### Hybrid technology road map



| Goal | Likely Target |
|------|---------------|
|------|---------------|

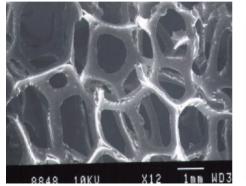
|                           | FE Electronics                   | Mechanics                              | System                                   | Sensors                               |
|---------------------------|----------------------------------|----------------------------------------|------------------------------------------|---------------------------------------|
| Lower mass                | Lower power,<br>System-on-chip.  | Materials,<br>Integration,<br>Cooling. | Integration,<br>Power distribution.      |                                       |
| Lower cost                | More<br>channels/chip            | Modular<br>assembly                    | Modular assembly                         | Larger wafers,<br>Simpler process.    |
| More radiation tolerance. | Deep submicron.<br><=45nm ???    |                                        |                                          | Rad hard silicon,<br>Other materials. |
| Higher data<br>rate       | Architecture,<br>Deep submicron. |                                        | Data transmission.<br>(no time to cover) |                                       |

# Front end electronics has the greatest potential to realize gains



- Power reduction
  - For equal sensor capacitance same performance with lower power requires higher  $g_m/I_D$  transistors.
  - CMOS feature size scaling does not provide this.
    - Could use special processes (like SiGe)
  - Or outside the box approach: reduce analog performance and compensate with digital processing.
- Radiation hardness
  - Have been lucky with thin gate oxide
  - Can't assume luck will last forever
  - Are high K metal gate processes rad hard?
    - (45nm feature size and smaller)

### **Electronics continued**




- Increased integration
  - More channels per chip
  - High level functionality in front end chip
  - More sophisticated digital design and verification
- System on Chip
  - 3-D integration
  - Deep submicron
  - On-chip power conversion and conditioning
  - Larger design collaborations
  - See FE-I4 poster

### **Mechanics**



- New materials
  - Fully exploit carbon composite possibilities
    - Example: new type of thermally conductive foam
    - Improved FEA foam models needed

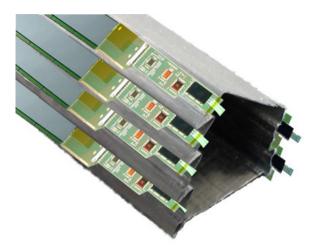




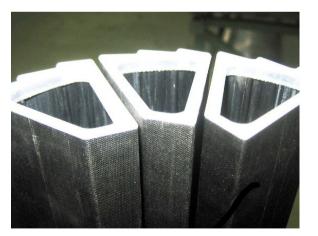
- Example: braided carbon pipes



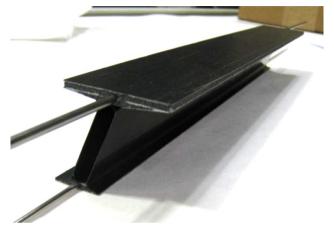
~20 W/m/K at 0.2 g/cc has been achieved (Allcomp, Inc.)


*Leak tightness at 100bar seems achievable* 

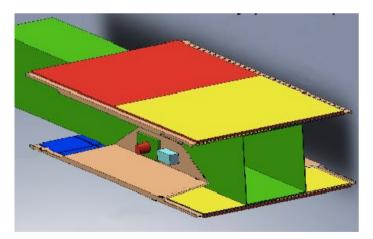
- CO2 cooling
  - Example of LHCb sysyem working very well
  - Generally assumed to be the cooling solution for LHC tracker upgrades


Oct. 8, 2010

### **Mechanics: Layers with shared structure**







ALICE hybrid pixel wedge



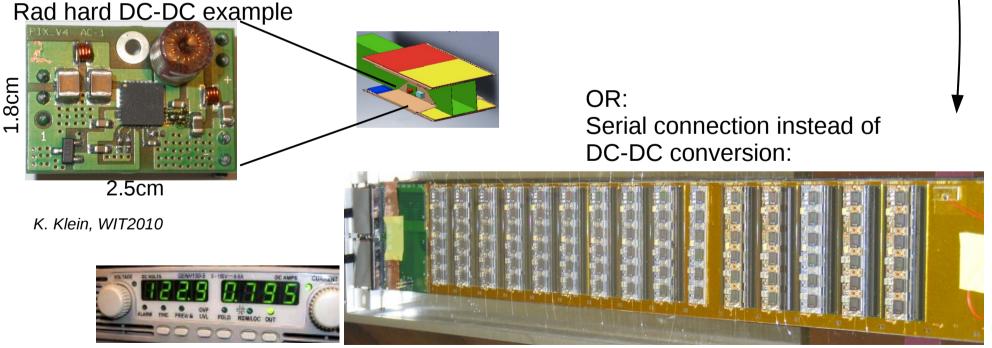
STAR HFT upgrade air cooled wedges (CMOS active pixels)



ATLAS pixel R&D I-beam prototype



CMS upgrade box beam concept


Oct. 8, 2010

High Rate & Multiplicity

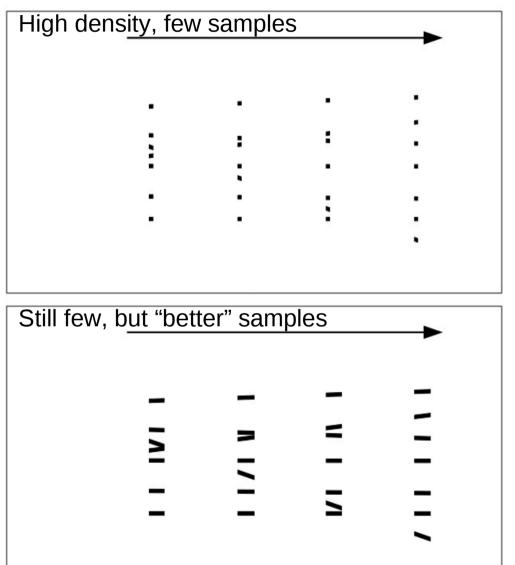
### **Electro-mechanical integration**



- Mass reduction by making elements serve multiple purposes.
- Assembly effort reduction by integrating large modular units -(important to make detectors with very large N<sub>ch</sub> affordable)
- Power conversion at point of use to minimize electrical services.
  - Lots of work being done on discrete, rad-hard converters.
  - If it can all be done inside the chip that will be best



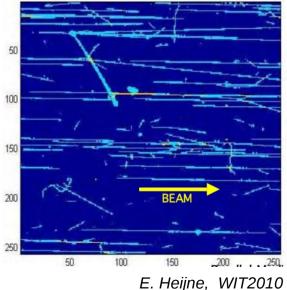
C. Haber, WIT2010


Oct. 8, 2010

High Rate & Multiplicity

### **Keep in mind new directions**




- May be possible to surpass incremental technology improvements by reinventing the detector
- Revisit pattern recognition cartoon.
- Instead of more samples
- More information per sample
- Vectors instead of points
- Not really a new concept, but not yet applied to silicon



### **Coupled layers**



- Significant recent interest in coupling silicon layers not just mechanically, but also electrically in order to produce vectors
  - See eg. proceedings of 2010 Workshop on Intelligent Trackers http://jinst.sissa.it/jinst/common/JINST\_proceedings.jsp
- Work has been so far motivated by the possibility to generate a self-seeded track triggers
- However, the vector concept should be considered more generally as a potential high multiplicity high rate solution (solve pattern recognition with potentially lower mass).
- Again a theoretical analysis of the min. number of vector layers needed vs multiplicity would be very useful.
- Extreme case: silicon emulsion --> 120 Gev pi+ beam sideways through Medipix module



### **Conclusions / wish list**



- Lowering mass/layer is not JUST nice for the calorimeters downstream, it is REQUIRED for pattern recognition at high rate and multiplicity.
- Theoretical analysis of required sampling density needed as a function of multiplicity, for space points or vector samples.
- Want special technology for inner layers or bckd. dominated.
- Hybrid technology presently only candidate, but for outer layers others may be soon viable.
- Front end IC development is the first place to make gains:
  - Reduce power, increase BW, increase integration (lower cost and mass), preserve radiation hardness
- Mechanics and higher level integration (modularity) not far behind.
- New concepts (vector samples, trigger capability) must be explored further.
- Did not cover data transmission