Workshop on Detector R&D, October 7-9 2010, Fermilab

Semiconductor Detectors in High Energy Physics Experiments --- Radiation Limitations and Rad-Hard Technologies

Zheng Li Brookhaven National Laboratory

*This research was supported by the U.S. Department of Energy: Contract No. DE-AC02-98CH10886

OUTLINE

- Detector material and configurations
- Radiation induced degradation in Si detectors
- Current Rad-hard technologies (LHC and sLHC)
 - Material/Impurity/Defect engineering
 - New electrode configurations
- New Rad-hardness technologies (sLHC and beyond)
 - Current-injected-diodes (CID)
 - Charge multiplication
 - New 3D-Trench electrode detectors
- Detector processing facilities
- Collaborations between US National Labs and universities
- Summary and future needs

Semiconductor Materials For Particle Detectors

	Density (g/cm³)	Bandgap (eV)	Dielectric constant	Displace-ment threshold energy (eV)	e-h creation energy (eV)	µ _e (cm/s/V)	µ _h (cm/s/V)	# of e-h pairs/0.3% X ₀
Si	2.3	1.12	11.9	13.5	3.6	1450 Good e mobility	450 Good h mobility	24k Good signal
C (Diamond)	3.5	5.5 Very low leakage current at RT	5.7 Small capacitance	80 Much less lattice damage	13-17	1800 Good e mobility	1200 Very good h mobility	7.2k Low signal
SiC	3.2	3.3 Low leakage current at RT	9.7	30 Less lattice damage	9	400-900 Modest e mobility	20-50 Poor h mobility	13k
Ge	5.3 Hi Z, good for hard X-ray	0.66 Hi leakage current at RT	16 Large capacitance	15	3	3900 Very good e mobility	1900 Very good h mobility	16k
CdTe	5.9 Hi Z, good for hard X-ray	1.49	10	6.7	5	1050 Good e mobility	100 Poor h mobility	6.6k Low signal

Why do we concentrate our efforts on Si

At extremely high radiation fluences, Si is as hard as other semiconductor materials in charge collection

Si is by far the most used material for particle detectors for its:

- Abundance on earth
- Mature and reproducible wafer manufacture
- Natural oxide for passivation and masking
- Mature processing technology
- Radiation hardness

Semiconductor Detector Configurations

	Spatial Sensitivity	Mostly Used for	Rad-hardness	Processing	Readout
Pixel	2D	HEP/NP	Good (small area – small leakage current)	Single-sided	Each pixel (fast, 10's ns)
Single-sided strip	1D	HE/NP	Modest	Single-sided	Each strip, e's or h's (fast, 10's ns)
Double-sided strip	2D	HE/NP	Not good (n-side not rad- hard)	Double-sided	Each strip, e's and h's (fast, 10's ns)
CCD (Charge-coupled-device)	2D	X-ray and others	Not good (very sensitive to trapping)	Single-sided	Each column (slow, µs's)
Drift (SDD) (Si drift detector)	2D	X-ray NP and others	Not good (very sensitive to trapping, and to doping change)	Double-sided	Each anode, e's (slow, μs's)
AMPS (JFET) (Active matrix pixel sensor) DEPFET (PMOS) (Depleted P-channel FET) Fully depleted	2D	X-ray and others	Not good (very sensitive to trapping, and to doping change)	Double-sided	Each column (slow, µs's-ms)
MAPS (CMOS) (Monolithic active pixel sensor)	2D	X-ray and others HEP/NP	Modest? (very low resistivity EPI Si)	EPI Si (20-50µm) SOI (fully depleted)	Each column (slow, µs's-ms)
Zheng Li Detector RD W	orkshop, FN	AL, Oct. 7-9,	2010		

Radiation induced degradation in Si detectors

1. Leakage current

Introduction rate at 20 °C	Temp dependence	% of annealed out at 24 °C in 10 min	% of annealed out at 24 °C in 65 hrs	% of annealed out at 24 °C in 588 days
$J = \alpha \Phi_n$	$J(T)/J(T_0) =$ exp[- $E_a/k(1/T - 1/T_0)$]			
α=4-6x10 ⁻¹⁷ A/cm	$E_{a} = 0.65 \text{ eV}$	30	60	95

Neff (cm -3)

Positive space charge

'n

710 V 1013 4000hm-cm

 $V_{fd} (d = 300m)$

2. Bulk resistivity

Si bulk resistivity increases with Fluence and saturates near the

3. Space charges

Radiation induced degradation in Si detectors

4. Charge collection efficiency

At 10¹⁶ n_{eq}/cm² (sLHC fluence for pixels/10 years) τ_t =0.2ns:

$$d_{CCE} = v_{dr} \cdot \tau_t \le v_s \cdot \tau_t \approx 20 \text{ } \mu\text{m} \text{ (10^{16} n_{eq}/cm^2), near RT, no anneal}$$

$$Q_{2D} = 80 * (d_{CCE}^e + d_{CCE}^e) = 160 * 20 = 3200 e's$$

• Current Rad-hard technologies (LHC and sLHC)-1

• Material/Impurity/Defect engineering

Oxygenated Si (O to getter the rad-induced defects)

Oxygenated Si	Process	[0]	Rad-hardness
HTLT (BNL) DOFZ (CERN RD48)	1150 to 1200 °C oxidation 24 to 216 hrs in O ₂ (or N ₂ after oxidation)	4-5x10 ¹⁷ /cm ³ Uniform throughout the thickness (300 μm)	The rate of V_{fd} increase with fluence reduced by factor of 2 (charged particles only: p, π), not n
MCZ (HIP, BNL) (Magnetic Czochralski)	Crystal pulled in magnetic field	~10 ¹⁸ /cm ³ Uniform (~1k Ω–cm n-type 2k Ω–cm p-type)	The rate of V_{fd} increase with fluence reduced by factor of 3-4 (charged particles only: p, π), not n
V _{fd} versus prot	on fluence measured by		
C-V on BNL	. 1.2 - 3 k Ωcm wafers		
Type inversion fro	om n to p		
350 300 300	Stan β= 0.0109	lard	
	β = 0.0047		
≥ ⁸ 100 +			
50	Oxygenated		
0			
0.E+00 1.E+14 2.E+14	3.E+14 4.E+14 5.E+14	6.E+14	
Proto	on fluence (p/cm ²) Zheng	<u>g Li Det</u> ector RD Works	hop, FNAL, Oct. 7-9, 2010

• Current Rad-hard technologies (LHC and sLHC)-2

• Material/Impurity/Defect engineering

Non-conventional materials

resistivity Silicon

Material type	SCSI (Space charge sign inversion)	Other rad-hard items
Low resistivity n-type Si (BNL)	Delayed inversion	Lower V _{fd} at high fluence than STD high resistivity Si
p-type Si (Liverpool, CERN RD50)	No inversion	Collection of e's slightly higher CCE than n-type

• Current Rad-hard technologies (LHC and sLHC)-3

• Detector structure engineering

Non-conventional detector structures

Detector Structure	Processing	Rad-hardness	Other issues
Thin detectors (Hamburg, MPI Munich)	2D-planar Etch-back may be required double-sided	Much lower V _{fd} Low resistivity Si may be used (100 Ω–cm)	Low total collected charge
Semi-3D (BNL)	2D-planar Single-sided	3-4 times lower V _{fd}	No CCE improvement at high fluences
Early 3D with column electrodes (Hawaii/Stanford CNM, Glasgow, Trento, Sintef, BNL)	3D processing Double-sided Single-sided possible	De-coupling of d with depletion depth much lower V _{fd} , much improved CCE at high fluences	Complicate E-field profile – low field regions; potential saddle points

Early 3D Detectors (Initial concept)

- o p⁺ and n⁺ column electrodes are etched and dopants are diffused in along the detector thickness ("3D" processing)
- **O Depletion develops laterally (can be 50 to 100 μm): decoupled from thickness**
- **o** Much less V_{fd} --- much higher radiation tolerance
- **o** Electrode spacing can be $\sim d_{CCE}$ ---- much reduced trapping

Different variants of early 3D detectors

Single-sided 3D (BNL) True single-sided process and access Same E-field, simple processing

Double-sided access (CNM, Trento)---Same E-field, separation of electrodes

G. Pellegrini, 3rd Workshop on Advanced Silicon Radiation Detectors (3D and P-type Technologies), April 14-16, 2008 Barcelona, Spain

Charge collection in early 3D detectors

Zheng Li Detector RD Workshop, FNAL, Oct. 7-9, 2010

New Rad-hardness Technologies-1

• Current-injected-diodes (CID) --- reduction of both V_{fd} and trapping

RD39 CID strip detector test beam results (MIP charge) CERN H2 muon, 225 GeV/c (-52 °C (221K))

• New Rad-hardness technologies-2

• Charge multiplication

Signal vs. Bias Voltage

I. Mandić, RESMDD08, Florence, Italy, 15th -17th October 2008 Zheng Li Detector RD Workshop, FNAL, Oct. 7-9, 2010

Fluence dependence of CCE

CCE and currents after neutron irradiations

How to make the leakage current not being the dominant noise, and therefore controlthe S/N ratio remain a issueZheng Li Detector RD Workshop, FNAL, Oct. 7-9, 2010

Comparisons of various technologies

Possible Si pixel detector solutions for sLHC's most inner region and future colliders

Solution	CCE improvement due to	Technology/ implementation difficulties (Time scale)
Replacement every 1-2 years	New detectors	Hard to access the inner region (Available)
Early 3D Si detectors	Small <i>V_{fd}</i> Small drift distance <i>t</i>	Complicated processing technology Complicated E-field profile (Available)
CID	Fixed electric field (small bias) Freezing traps (low trapping) Low leakage current	Difficult to implement cryogenic system, more R&D needed (2-5 years)
Elevated temp annealing (MCZ Si only, T _{ann} ≥ 400 °C)	Annealing out of defect levels related to: Leakage current, space charges and trapping	Difficult to implement annealing in a full detector system, more R&D needed (laser, microwave, leakage current itself, etc.) (3-5 years)
New 3D-Trench-Electrode detectors	Very Small <i>V_{fd}</i> Small drift distance <i>t</i> Near-uniform E-field profile	Complicated processing technology (3-7 years) Just started, much more R&D needed

• Detector Processing Facilities -1

University and National Labs

	Main Detector Technology	Main Material	Wafer size	Particle Physics related
BNL USA	Pixel, Strip/Stripixel SDD, AMPS 3D (Development, simulation, and design)	Si	4", 6"	US ATLAS CERN RD39 CERN RD50 RHIC (X-ray det for photons)
CNM Spain	Pixel, Strip, 3D	Si	4"	ATLAS CERN RD50
HIP Finland	Pixel Strip	Si	4"	CMS CERN RD39 CERN RD50
LBL USA	Fully-depleted CCD, Strip	Si, Ge	4"	X-ray Astrophysics
MPI Halbleiterlabor Germany	Pixel, Strip, SDD AMPS, DEPFET	Si	4", 6"	X-ray Astrophysics

• Detector Processing Facilities -- 2

Commercial

	Main Detector Technology	Main Material	Wafer size	Particle Physics related
CiS-MSP Germany	Pixel, Strip	Si	4"	CERN RD50
FBK-IRST (Trento) Italy	Pixel, Strip, 3D	Si	4", 6"	CERN RD50
Hamamatsu Japan	Pixel, Strip (No double- sided)	Si	4", 6"	LHC/sLHC
KETEK Germany	SDD AMPS	Si	4", 6"	X-ray
Micron Semiconductors UK	Pixel Strip	Si	4", 6"	CMS CERN RD39 CERN RD50
SINTEF Norway	Pixel, Strip, 3D	Si	4", 6"	ATLAS

• Collaborations between US National Labs and universities

Past and current

Institutes	Subjects	Status
BNL, FNAL, U. NM, Purdue, Rochester, Rutgers, Syracuse	Rad-hard Si detectors, Semi-3D Si detectors	2002-2009
US ATLAS (various institutes)	New detectors for LHC Upgrade	On-going
Possible future	collaborations	

Institutes	Subjects	Status
BNL, FNAL, U. NM, Purdue, Rochester, Syracuse	Rad-hard Si detectors, New 3D-trench Si detectors	Discussions at this workshop
BNL, Argonne, FNAL	New detectors for Photon science	Already under discussion

Summary and Future Needs

• Radiation-induced damages cause detector electrical properties to degrade:

- increase of detector leakage current
- compensation of Si bulk (intrinsic bulk resistivity)
- increase of negative space charge during radiation and annealing
- reduction of collected charge due to trapping
- **o** Conventional technologies may be rad-hard enough for LHC
 - **o** Oxygenated Si and MCZ Si
 - o Early 3D Si detectors

• To obtain ultra high radiation hardness/tolerance for sLHC, much more R&D are needed for new technologies:

New 3D-Trench-Electrode Si detectors --- much better E-field profile and larger Q and CCE --- Just started: much more work needed in fabrication and testing

3D integration of electronics and detectors --- interconnections: --- More work needed in wafer bonding, SOI, TSV, etc. (FNAL, BNL, LBNL, etc.)
Current injected diodes (CID) operated at low temperatures for increased *Q* and CCE --- More work to implement low T system

Study of charge multiplication in heavily irradiated detectors --- large Q and CCE --- More work needed to control S/N Zheng Li Detector RD Workshop, FNAL, Oct. 7-9, 2010

Back-up slides

Si is by far the most used material for particle detectors for its:

- Abundance on earth
- Mature and reproducible wafer manufacture
- Natural oxide for passivation and masking
- Mature processing technology
- Modest radiation hardness
- LHC Experiments:
 - ATLAS
 - 1.7 m² pixel detectors
 - 61 m² strip detectors (SCT)
 - CMS
 - All Si Tracker: over 200 m²
- SLHC: All-Si-tracker

J Takahashi, et al, NIM A461 (2001) 139-142

RY Radiation Distribution for ATLAS Inner Detectors (1 MeV neutron equivalent /cm²/year)

For 10 years LHC operation: Total fluence: >10¹⁵ n/cm² for pixels, and > 10¹⁴ n/cm² for strips For SLHC, it is about 10 times larger Zheng Li Detector RD Workshop, FNAL, Oct. 7-9, 2010

Radiation induced degradation in Si detectors

3. Space charges

o Space charge sign inversion (SCSI): + → -

 $N_{eff} \sim - b\Phi_n$,

b= 0.02 for standard Si material

o Beneficial annealing (BA), τ (RT) = 10 days

o Reverse annealing (RA), τ (RT) \approx 1 year

Planar(2d) detector, uniform charge distribution

Very little effect of Q on bias voltage V for V > 900 volts near $10^{16} n_{eq}/cm^2$

Very little effect of Q on detector thickness d for d> 100 μm near 10¹⁶ n_{ed}/cm^2

- New Rad-hardness Technology
 - Current-injected-diodes (CID)
- CERN RD39
 - Cryogenic temperature operation (-130 to -40 °C)
 - Leakage current not a factor
 - Both trapping and N_{eff} reduced \longrightarrow CCE increase

Simulation : $\Phi_n = 1.4 \cdot 10^{14} \text{ cm}^{-2}$; V = 210 V. +J_p 30 p j, nA/cm² P+ 25 P+ C or N+ T = 140 K E(x) 20 **Injection to** Em E manipulate E-field 15 Š 20 high injection ш 10 Jopt $E(x) = \frac{3}{2} \frac{V}{d} \cdot \sqrt{\frac{x}{d}}$ 5 $E_m = \frac{3}{2} \cdot \frac{V}{d}$ 0 150 0 50 100 200 250 $X, \mu m$ $\tau_{t} = \frac{1}{\sigma v_{th} N_{t}^{empty}}$ Trapping E. Verbitskaya et al., IEEE Nuclear Science Symposium, Lyon, October 2000 time Fill Freeze **Injection to reduce** E_C EC filled charge trapping **Electron trap Electron trap** Hole trap Hole trap filled Zheng Li Detector RD Workshop, FNAL, Oct. 7-9, 201 E_V Ev

Ave Q can be about 10000e's (>45%) at 1x10 16 n_{eq}/cm231Zheng Li Detector RD Workshop, FNAL, Oct. 7-9, 201031

Bump-bonding technology

Solder bumps on a fluxless MCNC

detector S. Cih

S. Cihangir, S. Kwan NIM A 476 (2002) 670–675

SDD

E. Gatti and P. Rehak, "Semiconductor Drift Chamber" – An application of a novel Charge Transport Scheme", Nucl. Instr. and Meth., A 255, pp. 608-614, 1984.

XAMPS (BNL)

Zheng Li Detector RD Workshop, FNAL, Oct. 7-9, 2010

H. Kruger, Nuclear Instruments and Methods in Physics Research A 551 (2005) 1–14

MAPS-CMOS

MAPS-SOI

J. Marczewski et al., NIM A 549 (2005) 112-116

