
LHC CRAB CAVITIES

RAMA CALAGA LARP DOE REVIEW, JUL 15-16, 2010

- Post Chamonix
- Current R&D Activities
- Towards a Cryomodule

Chamonix: "Upgrade Scenarios"

	Nominal	Ultimate +Crabs	Phase II +Crabs/D0	Phase II +LPA
N _b [x10 ¹¹]	1.1	1.7- <mark>2.3</mark>	2.3	4.2
β* [cm]	55	25-30	14-25	25
$\theta_{_{c}}$ [μ rad]	285	315-348	509	381
Pile Up	19	44-111	150	280

• Aim at x3-10 Luminosity increase

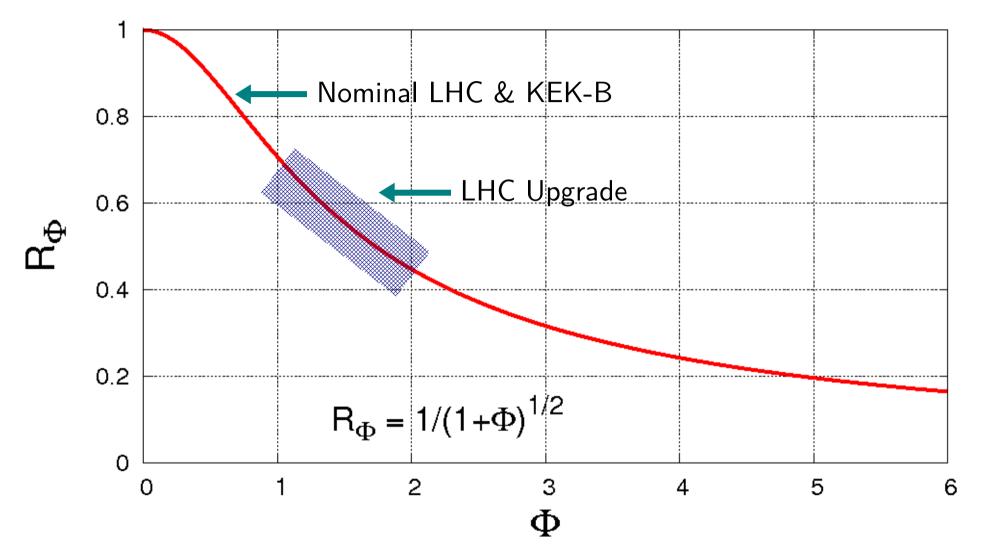
$$L = \frac{f_r n_b}{4\pi} \frac{N_b^2}{(\gamma \epsilon)} \frac{R_{\phi}}{\beta^*}$$

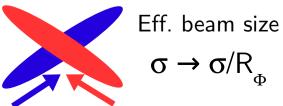
- Luminosity leveling vital \rightarrow constant luminosity
- Bunch intensity beneficial, **NOT** easily digestible in the injectors (safety!)

OUTCOME THEREAFTER

Potential upgrade

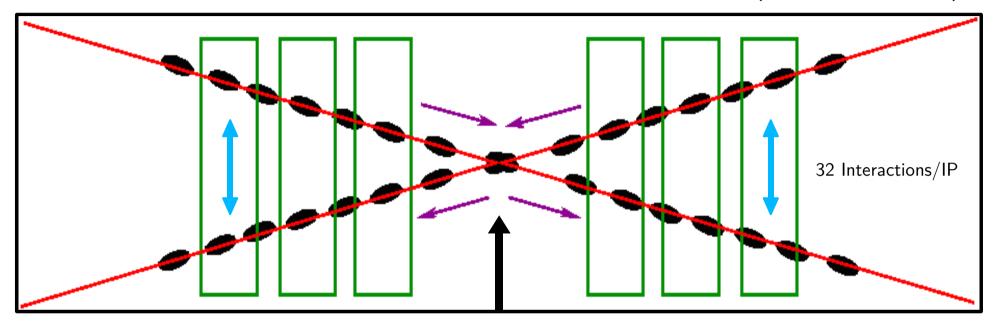
Increase intensity as possible ightarrow 1.7 x 10¹¹ (2.3x10¹¹ limit)


Reduce $\beta^* < \text{nominal } \& \text{ compensate Piwinski angle (better IT's + crabs)}$


$\beta^* < Nominal$

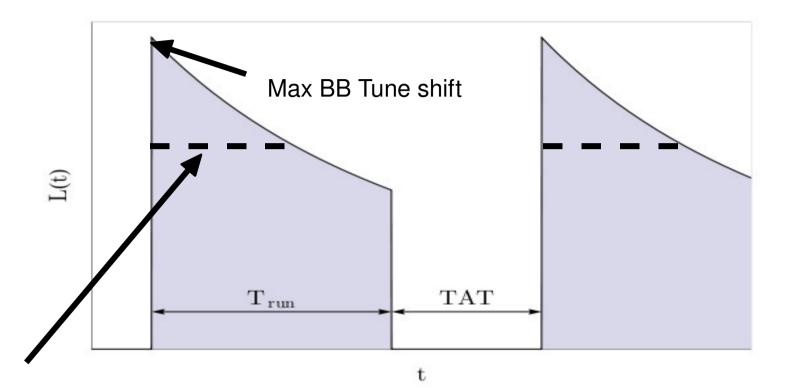
Previous upgrade optics, limited to ~30 cm (chromatic limits) Solution (S. Fartoukh, SLHC V3.0) $\rightarrow \beta^* < 25$ cm (flat-beams)

Crabs considered key for phase II luminosity upgrade


 $R_{_{\!\!\Phi}},$ Reduction Factor

Compensate $R_{\Phi}!$

Long-Range Beam-Beam (~10 σ Nominal Sep)



Head-On Beam-Beam (Limited by Max Tune Shift)

Why Crab Cavities:

- Increase peak luminosity with increasing x-angle due LR Beam-Beam
- Increase intensities beyond head-on beam-beam limit
- Level luminosity desired by experiments (reduce Pile-up, radiation damage)

LUMINOSITY LEVELING

Advantages (perhaps a requirement):

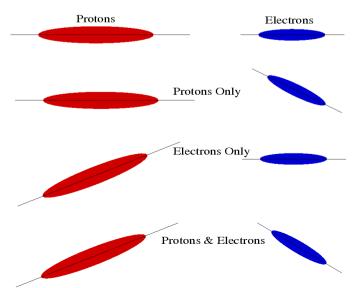
Constant Luminosity ($\sim 3 \times 10^{34}$)

Less pile up at start

Less peak radiation on IR magnets/detector

Crabs \rightarrow Natural knob w/o lattice change

Graphic courtesy G. Sterbini

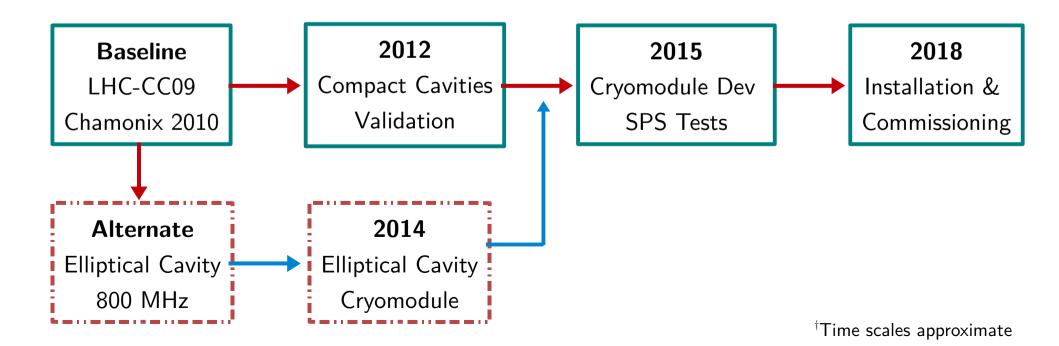

LHEC & CRABS

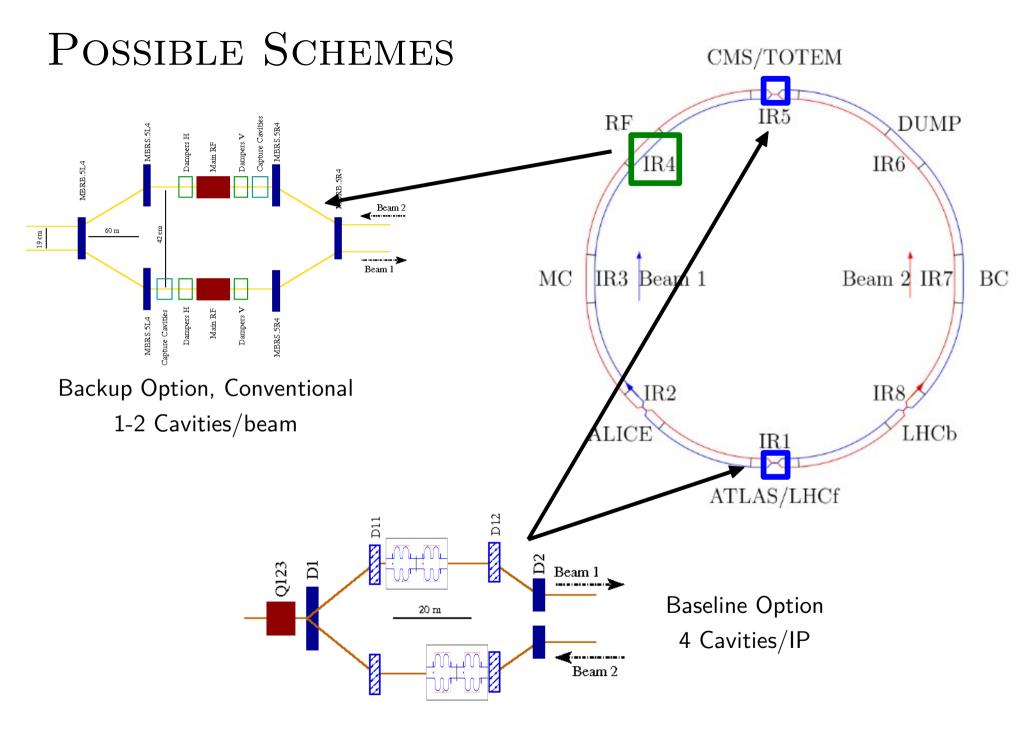
Reduce luminosity loss and help deviate synchrotron radiation

$$\Phi_p \sim \frac{\theta_c}{2\sqrt{2}\sigma_x^*} \sqrt{\sigma_{z,1}^2 + \sigma_{z,2}^2}$$

Par	KEK-B	LHC			LH	eRHIC	
		Nominal	Phase I	LPA	RR	LR	
$\theta_c \text{ [mrad]}$	22.0	0.285	0.420	0.381	1.0	0.0(4.0)	0.0(5.0)
σ_z [cm]	0.7	7.55	7.55	11.8	7.55 (0.7†)	$20/1.2^{\uparrow}$
σ_x^* [µm]	103	16.6	11.2	11.2	$30~(15.8^*)$	-	32 N
Φ	0.75	0.64	1.4	2.0	$0.9(1.6^*)$	0.0	0.0 (11.05

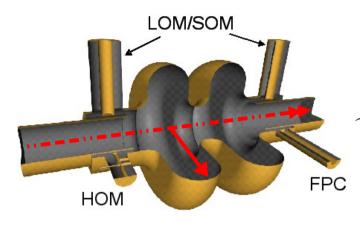
Scenario	$\Delta L/I$	•o [%]
	400 MHz	800 MHz
Head-On (with CCs)	88	48
Uncross only e^-	0.	.7
Uncross only p^+	88	48
X-Angle	1.	.0


New Roadmap


Crabs considered key for phase II luminosity upgrade

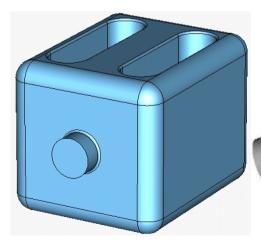
- CERN must pursue crab crossing following KEK-B success
- Both local (baseline) & global should pursued
- High reliability (cavity, machine protection, impedance & mitigation)
- No validation in LHC required (ex: SPS as test bed with KEK-B cavities)

From S. Myers LHC-CC09

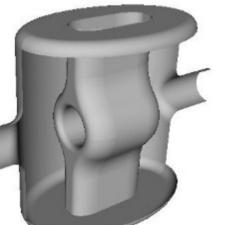

• Coordination & timing: both short term & long term upgrades of LHC

Compact cavities -OR- doglegs needed for conventional cavities (impractical)

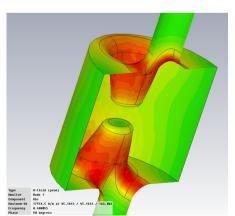
CONVENTIONAL TO COMPACT

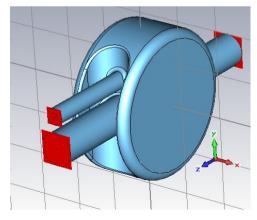


 ${\sim}250~\text{mm}$ outer radius, 800 MHz

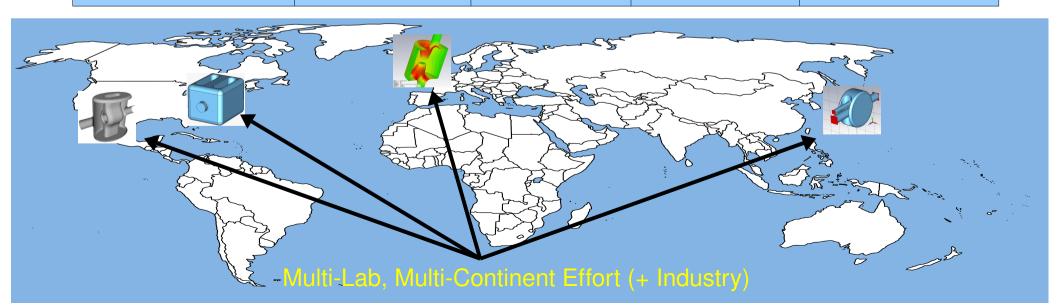

(Developed, but only foreseen as backup for LHC)

Compact cavities aiming at small footprint & lower frequencies, 5-10 MV/cavity

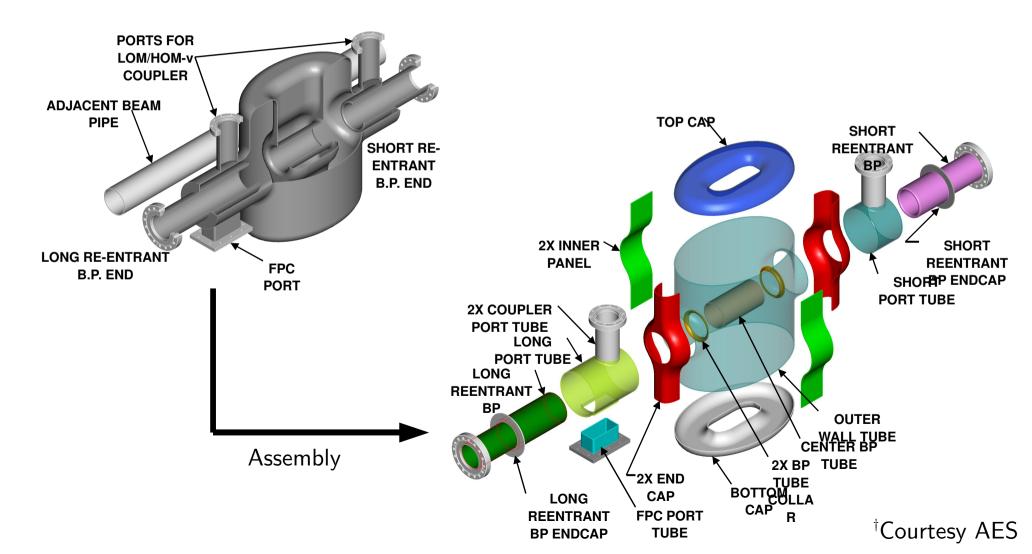



HWSR, SLAC-LARP

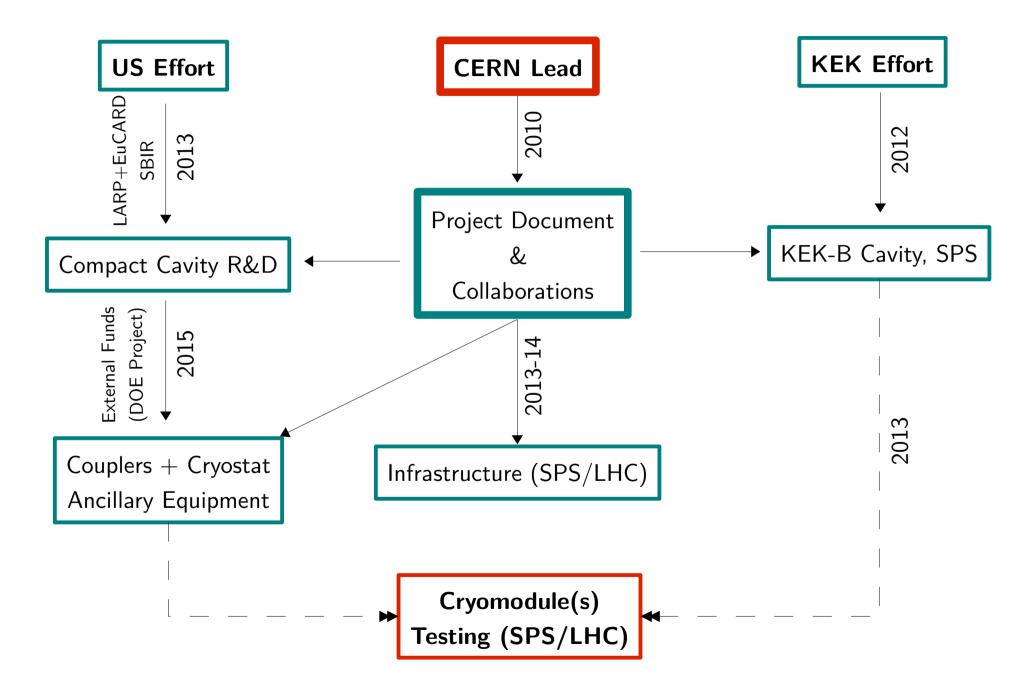
DR, UK, TechX


Rotated Pillbox, KEK

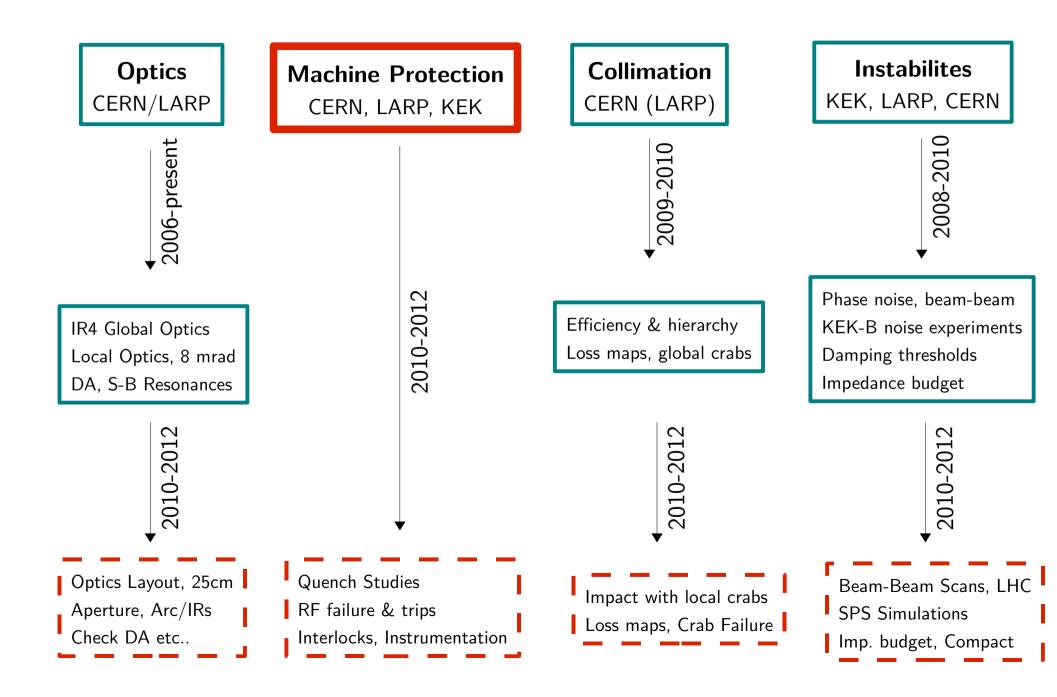
Performance Chart


Kick Voltage: 5 MV, 400 MHz

		HWDR (J. Delayen)	HWSR (Z. Li)	4-Rod (G. Burt)	Rotated Pillbox (N. Kota)
Geometrical	Cavity Radius [mm]	200	140	140	150
ome	Cavity Height [mm]	382	194	230	668
Ů	Beam Pipe [mm]	50	45	45	75
	Peak E-Field	29	65	62	85
RF	Peak B-Field	94	135	113	328
	R _T /Q	319	275	800	-



EXAMPLE OUTCOME: LARP + AES-SBIR


- Detailed multipacting analysis of cavity & couplers LARP
 - Also help with other cavity development
- Cavity engineering (mechanical & thermal analysis) AES

WORK FLOW, TECHNOLOGY

WORK FLOW, SIMULATIONS

SPS TESTS, WG

No real showstoppers were identified.

Earliest availability, Dec 2010, estimate SPS test date Dec 2012 - May 2013

The best location in SPS is at COLDEX.41737 (4020 m, LSS4)

Collimation with integrated instrumentation

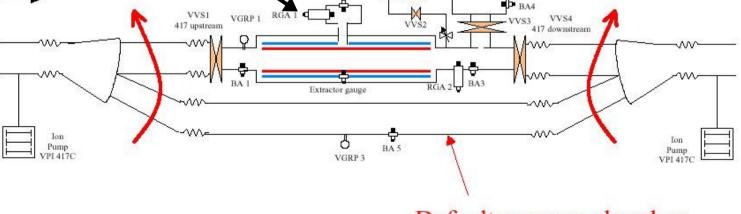
1st (SLAC) collimator sees no effect & full crab effect at 2nd second (CERN) collimator

Integration

Removal of COLDEX ~2-3 weeks, cryogenics refurbish ~ 200kCHF RF Power: IOTs (1-2), 400 kCHF & space requirements After 2 MHz tuning at KEK-B, re-assembly and test at SM18?

SPS beam tests, 2010 to check lifetime @55GeV coast with $2\mu m$ norm emittance

Machine protection


Primary goal is beam measurement (No implementation of interlocks, BPMs-fast & RF-slow) Failure scenarios (for example: measure evolution of RF phase and effect on the beam)

Crab Bypass

Similar to COLDEX to move it out of the way during high intensity operation Technical details (RF connections, cryogenics, size, weight etc...) needs to be sorted out

COLDEX LOCATION

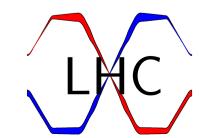
110 0.1 $_{D_{x}}^{\beta_{x}}$ 0 100 Longitudinal Position: 4009 m +/-5m-0.1 90 -0.2 80 E 70 -0.3 Total length: 10.72 m $\beta_{x,y}$ [m] D_x [m] -0.4 -0.5 60 βx, βy: 30.3m, 76.8m -0.6 50 -0.7 40 CrabCav -0.8 30 -0.9 20 3.96 3.98 3.94 4.06 4.08 4.1 4.12 4 4.02 4.04 Longitudinal Position [km] Idea to test crab cavities Dry Scroll Ion Pump VPS 1 VPS 2 Pump 文 TMP VPI 1 Gaz supply Capacitance Ti gauge Protons VGRP 2 BA₂ ŧO BA4

Default vacuum chamber

LARP ACTIVITIES, OUTLOOK

Crab Cavity Effort, LARP										
June 23, 2010			2010-I	2010-II	2011-I	2011-II	2012-I	2012-II	2013-I	2013-II
BNL	R. <u>Calaga</u>	FTE + 25% OP		250k		300k				
LHC/SPS Parameters			,	100K		JUUK				
Machine Protection										
Cavity/Coupler R&D										
SPS Test Objectives										
SPS Installation & Tests										
Coordination + Project Proposal										
FNAL	Y. <u>Yakovlev</u>	0.5FTE + 25% OP		6k		75k				
Multipacting Simulation										
Cryomodule R&D										
Coupler R&D										
SPS Simulations										
Jlab	J. Delayen	Student + 25% OP	6	i5k ?		65k				
Compact Cavity R&D										
Coupler R&D										
LBNL	J. Qiang	0.5P-Doc + 10% FTE	6k	(+25k)	50	k + 6.5k				
Beam-Beam Simulations										
Low-level RF										
	Z. Li	0.25FTE + 25% OP		65k		75k				
Compact Cavity R&D										
Multipacting Simulations										
Coupler R&D										

* Lab funds, SBIR/STTR & outside funding are complementary


STRAWMAN SCHEDULE

				Ţ		LHC-CC	Worksho	ops
ask	Sub-Task	FTE Request	Fund Request	2010	2011 1 st 2 nd	2012 1 st 2 nd	2013	2014 1 st 2 nd
avity							1 2	
	Cavity Design					LHC Sh	utdown	
	Couplers & HOM Damping							
	Multipacting & Mitigation							
	Mechanical/Thermal Analysis							
	Instrumentation							
	Copper Models & Testing							
	Niobium Specification & procurement							
	Niobium Fabrication & Processing							
	Low Power Testing (VTA)							
	Couplers Fabrication & Testing							
	Complete Assembly & Testing							
Cryostat								
	LHC Tunnel Constraints							
	Conceptual Design, Nominal	$\lambda / a; t;$	ng for					
	Technical Design & Analysis	vvalti	ng for					
	Procurement, Fabrication		C					
	Assembly & Test Stand	Input	trom					
Cryogenics								
, ,	Test Stand Specs	CER	N-RF					
	4K (2K) Circuits							
	Interface with SPS/LHC Qyo							
	Safety Valves, Interlocks							
	CERN Test Stand Preparation							
RF Controls								
	LLRF Simulations & Specs							
	RF Controls & Testing							
	Integration with LHC controls	(m						
nfrastructure		10						
	Infrastructure Specifications							
	Power Amplifiers, 400 MHz	ر	Į					
	Transmission Lines Layout	01						
	Survey and Alignment	^ ⊂						
	Radiation Issues	1						
	Cryomodule Installation							
	RF Powering & Beam Tests							
	HE Powering & Deam Tests							

* Being revised by CERN-RF

CONCLUSIONS

- Post Chamonix
 - LARP contribution via crab studies vital
 - Fabrication funds external (CERN, DOE, EuCARD, KEK)
 - Upon approval SBIR/STTR may help with near term R&D
- Current Activities
 - Aggressive R&D on compact cavities (need additional funds to prototype)
 - Outline and address machine protection issues
 - SPS tests & preparation (appropriate technology ?)
- Towards a cryomodule
 - "LHC note" with CERN-RF to detail "scope, parameters & schedule"
 - US Project proposal to construct 2-cryomodules spanning 4-5 yrs

Why not participate in prototyping now ?

SPS TEST OBJECTIVES, PROTONS

Safe beam operation (low intensity) & reliability

Tests, measurements (orbits, tunes emittances, optics, noise)

Voltage ramping & adiabaticity

Collimation, scrapers to reduction of physical aperture with & w/o crabs

DA measurements (possible ?)

Intensity dependent measurements (emittance blow-up, impedance) Coherent tune shift and impedance Instabilities Beam-beam effects (BBLR – tune scan, current scan) Other non-linearities (octupoles)

Operational scenarios

Accumulation of beam with crab-on & crab off

Beam loading with & w/o RF feedback & orbit control

RF trips and effects on the beam

Energy dependent effects

Long term effects with crab-on, coasting 120 GeV