Storage at UW-Madison CMS Tier-2

Will Maier wcmaier@hep.wisc.edu

University of Wisconsin - High Energy Physics

OSG Storage Forum, U. Chicago

1

1 Overview

2 Facilities

- Configuration
- Core
- Cluster

3 Management

- Administration
- Alerts and Trends

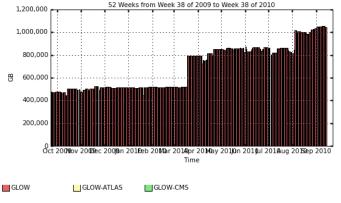
4 Evaluation

- What Works
- What Doesn't

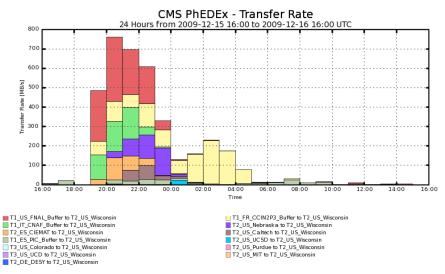
5 Plans

- dCache 1.9.5-8 (Golden Release)
 - Configuration available online ¹
- dCache SRM/GridFTP/dcap doors
- Xrootd Demonstrator instance
- Scientific Linux 5.3

¹http://code.hep.wisc.edu/dcache-cftree


- Four core dCache machines: PNFS, admin/misc, doors, hotspare
- 1 Gbps connections, SATA disks, 2x2 2.0 GHz Opterons, 16 GB RAM
- PNFS: RAID10 (10kRPM disks), 2x4 3.0 GHz Xeons
 - Current configuration ~ 12 months old
 - Nearly saturated (again)...need more IO
- admin, doors, hotspare: commodity, nothing special
 - No observed scaling issues with shared SRM/dcap door
 - ~32 GridFTP doors live on data nodes (easy to add more)

- \blacksquare ${\sim}50\%$ dedicated, ${\sim}50\%$ shared with compute resources
- Dedicated nodes: mix of RAID6, RAID0 with 1 2 TB SATA disks
- Shared nodes: no RAID, .5 2 TB SATA disks
 - Co-located with 4 16 slots and 2 48 GB RAM for computing
- ~950 raw TB, ~450 writable TB, 908(ish) pools, 210 nodes
 - One pool per disk, mostly
 - 100% increase over 2009
- Redundant 2x10 Gbps uplink (and several stacks of Cisco 3750s)
 - Managed by campus
 - Eliminated a few Etherchannels connecting racks
 - Upgraded rest to 10 Gbps bundles
- Burn in new hardware using stressapptest ²


² http://code.google.com/p/stressapptest/

Maximum: 1,056,005 GB, Minimum: 0.00 GB, Average: 681,173 GB, Current: 1,043,909 GB

Figure: Total dCache (TB), 2009-2010

Maximum: 761.39 MB/s, Minimum: 0.00 MB/s, Average: 164.46 MB/s, Current: 3.21 MB/s

Figure: PhEDEx peak transfers, late 2009

Storage at UW-Madison CMS Tier-2

Install nodes with kickstart, manage live configuration with Cfengine

- Management scripts written with dcache-tools ³, based on CLI ⁴
 - dcache_absent: List absent and offline pools
 - dcache_billingrep: Watch billing log and replicate new files
 - dcache_clean: Remove invalid/unlinked files directly from pools
 - dcache_df: df(1)-like overview of cluster storage
 - etc...
- Less web scraping, more dCache info provider
 - Previously, monitors/checks polled dCache web pages and scraped HTML
 - Info provider allows simple XML parsing (and exposes lots of detail)
 - Can request subsets of data (ie for dcache_df)

⁴http://packages.python.org/pyCLI

³http://code.hep.wisc.edu/dcache-tools

- Nagios checks for all servers in both the core and cluster
- Some Nagios protocol checks (GridFTP, SSH admin interface)
- Functional tests via cron jobs (SRM/dcap/GridFTP read/write)
- External monitoring (CMS SAM, JobRobot, Dashboard, SiteView, PhEDEx; OSG RSV, MyOSG, Gratia; ...)
- Aggregate local monitoring in tsar ⁵
 - Ingest time series data from simple collectors
 - Supports HTTP, other submission/query protocols to come
 - Data in memory for fast writes/reads (Redis ⁶ backend)
 - JavaScript, Python clients for visualization ⁷

```
<sup>5</sup>http://code.hep.wisc.edu/tsar
<sup>6</sup>http://redis.io
<sup>7</sup>http://tsar.hep.wisc.edu/plots/dcache
Maier (Wisconsin)
Storage at UW-Madison CMS Tier-2
```

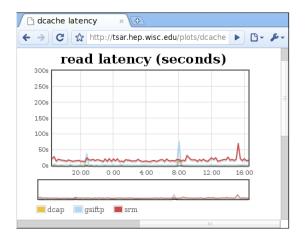



Figure: 24 hours of dCache latency checks in tsar, 2010.09.22

- Close network collaboration with University
- Co-locating storage and compute services on commodity hardware
- dCache (stability, throughput, OSG/FNAL support)
- Increasingly centralized monitoring and reporting

Disks

- Monitoring fragmentation
 - Takes Firefox nearly two minutes to load them all on a netbook
- dCache (hotspots, replication, commodity data servers)
 - Model mismatch: small precious storage with large tape backend vs precious storage (no tape)
 - We've written thousands of lines of code to make running dCache at our T2 livable

- Centralize dCache logging
- Scale tsar
- Transition to alerting based on trends (instead of binary checks)
- Explore HDFS w/ xrootd frontend (to support jobs on local opportunistic resources)
- PNFS \rightarrow Chimera? dCache \rightarrow HDFS?
- Cfengine 2 \rightarrow Cfengine 3/Puppet/Chef/...?
- Expand use of RPMs (for improved atomicity?)

