

Storage at Purdue Sept 22, 2010 Preston Smith <u>psmith@purdue.edu</u>

Overview

• HPC Resources at Purdue

– "Community Clusters"

- Central acquisition and operation of HPC resources, with nodes funded by faculty funds (grants, startup packages)
- Facilities, system administration, storage, networking, etc. all centrally provided by the University
- 3 systems in production today:
 - Steele (893 nodes, dual 2.33 GHz Quad-Core Intel E5410, GigE interconnect)
 - Coates (974 nodes, dual 2.5 GHz Quad-Core AMD 2380, 10GbE interconnect)
 - Rossmann (384 nodes, dual 2.1 GHz 12-Core AMD 6172, 10GbE interconnect)

Central Storage

- Central Storage
 - Home directories:
 - All homes in RCAC served by 60TB BlueArc Titan NAS
 - Local CMS users and users from OSG all get BlueArc space
 - General-purpose scratch:
 - Second 120TB BlueArc Titan NAS provides scratch for Steele
 - As well as shared application space
 - 200 TB Lustre Filesystem provides scratch for Coates and Rossmann

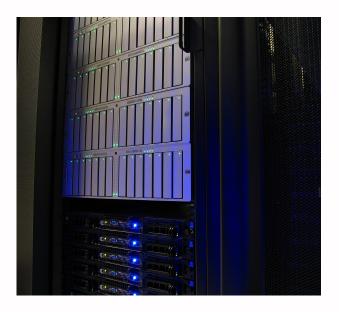
Archive

 1.3 PB DXUL archival system available to users. Upgrade to HPSS planned for late 2010.

Networking

• All dCache nodes are on public IP space

- Research network core provided by Cisco 6509s, maintained by campus data network staff
 - dCache connected Force10 C300, which is connected to core at 20 Gb/s
 - 10 GbE nodes connected to Cisco Nexus switch, connected to C300 at layer 2
 - 9000-byte MTUs everywhere



dCache at Purdue

- CMS storage is provided by dCache, version 1.9.5-19

– ~960TB of usable space

- Hybrid of resilient dCache and non-resilient RAID pools
 - 321 TB of resilient space
 - ~635 TB of nonresilient space

dCache Hardware

- Core servers
 - Admin node (PoolManager, admin interface, gPlazma, replica manager)
 - Sun x2200 (Dual-socket, dual-core Opteron 2218, 4GB RAM)
 - SRM node
 - HP ProLiant DL185 G5 (Dual-socket, quad core Opteron 2380, 16 GB RAM)
 - Chimera
 - HP ProLiant DL185 G5 (Dual-socket, quad core Opteron 2380, 16 GB RAM)

dCache Hardware

Resilient Nodes

- 70 Sun X2200 Compute nodes
 - Sun x2200 (Dual-socket, quad-core Opteron 2376, 8GB RAM)
 - 2 750 GB disks
- 154 Dell 1950 Compute Nodes
 - Dell 1950 (Dual-socket, quad core Xeon E5410, 16 GB RAM)
 - 21 TB disks
- All resilient nodes are connected at 1Gbit

dCache Hardware

RAID Servers

- 2 Sun x4500 "Thumpers"
 - 24TB ZFS
 - 4-way LACP bond (4 Gbit)

• 2 newer models of Sun x4500 "Thumpers"

- 48 TB ZFS
- 4-way LACP bond (4 Gbit)
- 3 Sun X4540 "Thors"
 - 48 TB ZFS
 - 10 GbE
- 11 White-box storage servers
 - 48 TB RAID-6 XFS, hotspares
 - 10 GbE

dCache Doors

dCache Doors

- As described already dedicated server for SRM
- Dcap doors on 5 servers
 - CMS TFC customized to select different door based on filename, to spread dcap load around
- GridFTP doors on 8 servers
 - RAID storage servers double as GridFTP servers
- Xrootd doors
 - Used by PROOF cluster and distributed xrootd service

Now, where are the bodies buried?

dCache experiences

- Despite what some may say, we are not dCache fanboys
 - We've operated a large installation stably for 5 years the enemy we know is better than one we don't!
- Some things work really well
 - Chimera is great!
 - System is fast overall
 - We can implement powerful storage polices with combining replica manager, path-based rules, and some scripting
- Some are less good
 - Had isses with dCache respecting secondary groups
 - ACLs
 - Have had issues in the past with doors getting stuck

Useful Tools

Tools and scripts that we use

- Write-protect nearly full pools
 - Bad things happen when pool filesystems fill to 100%
- chimera-dump.py
 - <u>http://www-zeuthen.desy.de/~leffhalm/chimera-dump.html</u>
 - Can do a lot of things with output from this tool
- Path-based replication policies
 - Used UNL's PFM previously
 - Now have similar functionality with perl-based script that uses chimeradump.py
 - » Can specify policies like:
 - » /store/user gets 2 copies of each file, on resilient nodes
 - » /store/unmerged gets 2 copies of each file
 - » /store/generator (Pileup) gets 5 copies of each file
 - » Watch dashboard for popular datasets, and replicate more copies while it's in demand.

Other Efforts

Other storage projects at Purdue

- Have two Hadoop clusters
 - Used mostly by Map-Reducing groups.
- Lustre
 - Operate large Lustre filesystems in production today
- Distributed Filesystem Testing
 - Ceph, MooseFS
- Distributed xrootd service
 - Wrote xrootd -> dcap plugin to tie dCache to service