ALCPG Physics & Detector Simulation Toolkit

Norman Graf (SLAC) (for the ALCPG Simulation & Reconstruction WG) Muon Collider Physics & Detectors Study Group May 19, 2010

LCD Simulation Mission Statement

- Provide full simulation capabilities for Lepton Collider physics program:
 - Physics simulations
 - Detector designs
 - Reconstruction and analysis
- Need flexibility for:
 - New detector geometries/technologies
 - Different reconstruction algorithms
- Limited resources demand efficient solutions, focused effort.

Overview: Goals

- Facilitate contribution from physicists in different locations with various amounts of time available.
- Use standard data formats, when possible.
- Provide a general-purpose framework for physics software development.
- Develop a suite of reconstruction and analysis algorithms and sample codes.
- Simulate benchmark physics processes on different full detector designs.

Path Forward

- Defining characteristic of the µC detector environment is the large number of background particles.
- Two major consequences:
 - Shielding limits the acceptance and hermiticity of the detector.
 - Sensitive detectors required to be rad-hard and highly segmented to disambiguate signal from noise hits.

Can this Detector do the Physics?

- The impact of loss of angular acceptance and hermiticity can be studied fairly straightforwardly using fast detector response simulations.
- Establish a series of "fail fast" requirements on the analysis using:
 - Unsmeared MC particle 4-vectors
 - Individually smeared MC particle 4-vectors
 - Full detector simulation reconstruction w/o backgrounds
 - Full detector simulation reconstruction with backgrounds
- Analyses can be conducted by the theory community using fastMC tools.

Can this Detector take the Data?

- High backgrounds have two major detector impacts
 - require rad-hard technologies
 - require excellent segmentation to handle hit densities
- Establish a series of "fail fast" requirements on the detector using:
 - Reasonable detector design (e.g. CMS tracker, not SiD)
 - do conversions unacceptably exacerbate occupancy problem?
 - Include explicit backgrounds from machine calculations
- Analyses can be conducted by the detector community using flexible full simulation tools.

Fast Simulations

Detector Studies

Full Simulations

Couplings

- To be efficient, one needs a tightly coupled community of physicists, as well as an integrated simulation toolkit, capable of ensuring commensurate performance of a specific detector design in both fast and full response simulations.
- ALCPG toolkit provides:
 - fastMC: covariant track smearing, shower smearing
 - lelaps: fast swimming, dE/dx, MCS, produces hits
 - slic: full and flexible Geant4-based response
 - org.lcsim full event reconstruction & analysis package

Fast Detector Response Simulation

- Covariantly smear tracks with matrices derived from geometry, materials and point resolution using Billoir's formulation.
 - Analytically from geometry description.
- Smear neutrals according to expected calorimeter resolution (EM for γ, HAD for neutral hadrons)
 - Derived from full Geant4 simulations
- Create reconstructed particles from tracks and clusters (γ , e, μ from MC, $\pi^{+/-}$, K^0_L for others)
- Can also dial in arbitrary effective jet energy resolution.
 - Derived from full simulation, reconstruction & analysis.

lelaps

- Fast detector response package.
- Handles decays in flight, multiple scattering and energy loss in trackers.
- Parameterizes particle showers in calorimeters.
- Produces detector data at the hit level.
 - Feeds directly into full reconstruction.
- Uses runtime geometry (compact.xml \rightarrow godl).

Lelaps: Decays, dE/dx, MCS

$$\begin{array}{c} \Omega^- \to \Xi^0 \ \pi^- \\ \Xi^0 \to \Lambda \ \pi^0 \\ \Lambda \to p \ \pi^- \\ \pi^0 \to \gamma \ \gamma \ as \\ simulated by \ Lelaps \ for \ the \\ LDC \ model. \end{array}$$

ne

gamma conversion as simulated by Lelaps for the LDC model.

11 Note energy loss of electron.

Detector Design (GEANT 4)

- Need to be able to flexibly, but believably simulate the detector response for various designs.
- GEANT is the de facto standard for HEP physics simulations.
- Use runtime configurable detector geometries
- Write out "generic" hits to digitize later.

Full Detector Response Simulation

- Use Geant4 toolkit to describe interaction of particles with matter.
- Thin layer of LC-specific C++ provides access to:
 - Event Generator input (binary stdhep format)
 - Detector Geometry description (XML)
 - Detector Hits (LCIO)
- Geometries fully described at run-time!
 - In principle, as fully detailed as desired.

LC Detector Full Simulation

Detector Variants

- Runtime XML format allows variations in detector geometries to be easily set up and studied:
 - Absorber materials and readout technologies for sampling calorimeters
 - e.g. Steel, W, Cu, Pb + RPC vs. GEM vs. Scintillator readout
 - Optical processes for dual-readout or crystal calorimeters
 - Layering (radii, number, composition)
 - Readout segmentation (size, projective vs. nonprojective)
 - Tracking detector technologies & topologies
 - TPC, Silicon microstrip, pixels, ...
 - "Wedding Cake" Nested Tracker vs. Barrel + Cap
 - Far forward MDI variants, field strength, etc.

GeomConverter

ILC Full Detector Concepts

slic: The Executable

- Build static executables on Linux, Windows, Mac.
- Commandline or G4 macro control.
- Only dependence is local detector description file.
 - Trivial Grid usage (no database call-backs, etc.)
 - Grid ready, Condor and lsf scripts available.
- Event input via stdhep, particle gun, ...
- Detector input via GDML, lcdd
- Response output via LCIO using generic hits.
- Fast and flexible (cuts, regions, physics lists)
- No license requirement

Reconstruction/Analysis Overview

- Java based reconstruction and analysis package
 - Runs standalone or inside Java Analysis Studio (JAS)
 - Fast MC \rightarrow Smeared tracks and calorimetry clusters
 - Full Event Reconstruction
 - Beam background overlays at detector hit level, including time offsets.
 - detector readout digitization (CCD pixels, Si μ-strips, TPC pad hits)
 - *ab initio* track finding and fitting for ~arbitrary geometries
 - multiple calorimeter clustering algorithms
 - Individual Particle reconstruction (cluster-track association)
 - Analysis Tools (including WIRED event display)
 - Physics Tools (Jet Finding, Vertex Finding, Flavor Tagging)
- Write once run, run anywhere
 - Exact same libraries run on all platforms (Windows, Mac, Linux(es), Grid) using the Java Virtual Machine.

Tracking

- Analytic covariance matrices available for fast MC smearing for each detector.
- Track "cheater" available for studies of full detector simulation events. Assigns hits on basis of MC parentage.
- Ab initio track finding packages.
- Fitting code incorporating multiple scattering and energy loss via weight matrix or Kalman Filter available.

Tracking Detector Readout

- Hits in Trackers record full MC information.
- Module tiling and signal digitization is deferred to analysis stage.

- Used to rapidly study many possible solutions.

- Fully-featured package to convert MC hits in silicon to pixel hits. Fully configurable at runtime.
 MC Hits→ Pixel ID & ADC→ Clusters→ Hits (x δx)
- Can correctly study occupancies, overlaps, ghost hits, etc.

Track Finding

- Standalone pattern recognition code for 1D (e.g. Si µstrip) and 2D (e.g. Si pixel) hits.
 - High efficiency, even in presence of backgrounds.
 - Efficient at low momentum.
- Conformal-mapping pattern recognition also available, applicable also to TPC.
- MIP stubs in highly segmented calorimeters also provide track candidates, propagate inwards to pick up tracker hits.

Validated

- This suite of software tools provides:
 - Physics event generation & bindings to most legacy generators through the stdhep format.
 - Full detector response simulation using precompiled binaries & runtime geometry definition (no coding!).
 - Full detector digitization (x-talk, noise, diffusion, etc.)
 - Hit-level overlay of arbitrary background events.
 - Access to other LCIO-compliant software frameworks.
 - Full ab-initio event reconstruction and analysis suites.
 - Tested on hundreds of millions of events.
- "From zero to analysis in 15 minutes."

Simulation Summary

- ALCPG sim/reco supports an ambitious international detector simulation effort. Goal is flexibility and interoperability.
- Provides a complete and flexible detector simulation package capable of simulating arbitrarily complex detectors with runtime detector description.
- Reconstruction & analysis framework was used to characterize the Silicon Detector and was essential to that concept's successful validation in the LOI process.
- Currently being used for CLIC studies.
- Being used to design Linear Collider Detectors, but has also been applied to other application domains.

Additional Information

- Wiki <u>http://confluence.slac.stanford.edu/display/ilc/Home</u>
- lcsim.org <u>http://www.lcsim.org</u>
- ILC Forum <u>http://forum.linearcollider.org</u>
- LCIO <u>http://lcio.desy.de</u>
- SLIC <u>http://www.lcsim.org/software/slic</u>
- LCDD <u>http://www.lcsim.org/software/lcdd</u>
- JAS3 <u>http://jas.freehep.org/jas3</u>
- AIDA <u>http://aida.freehep.org</u>
- WIRED <u>http://wired.freehep.org</u>