
Eric Vaandering
CMS / Fermilab

CRAB:
Introduction

CMS Tier3 Workshop
12 August 2010

Outline

• Overview

• Client/Server

• Usage

• Support

• Troubleshooting

CRAB:

CMS
Remote
Analysis
Builder

CRAB
• CRAB enables submission of CMSSW jobs to all

CMS datasets within the data-location driven CMS
computing structure

• The aim of CRAB is to hide as much of the
complexity of the GRID as possible from the end
user

• CRAB provides a user front-end to

• Find data in and publish data to DBS

• Split user jobs into manageable pieces

• Transport user analysis code to the data location for
execution (compiled on submitting node)

• Execute user jobs, check status and retrieve output

Software Components

• CRAB interacts with many different pieces of CMS
and Grid software on behalf of the user

• DBS: What data exists?

• Phedex: Where is it?

• BDII/SiteDB: What sites are available, who is the user?

• Proxies/MyProxy: User authentication

• Dashboard: Statistics and status of jobs

• Grid middleware: Job submission, I/O

DBS
• Data Bookkeeping Service

• What datasets exist where. What files they contain
and mapping to runs, lumi blocks

• Production creates datasets and registers them
with DBS

• Dataset is PrimaryDataset/ProcessedDataset/Tier

• Primary: Describes the physics channel

• Processed: Which software was used to process

• Tier: Kind of information: RAW/SIM/DIGI/RECO/etc

• Homepage for DBS is
http://cmsweb.cern.ch/dbs_discovery/

UI

• CRAB (CMS Remote Analysis Builder) is the CMS user
front end to the GRID

• The User Interface is the GRID specific software for
authentication, job submission and all other GRID
interactions

• CRAB works with UI’s from EGEE and from OSG

• FNAL: pre-initialized on cmslpc.fnal.gov

• CERN initialization: source /afs/cern.ch/cms/LCG/LCG-2/UI/cms_ui_env.(c)sh

• You won't have to use it directly, CRAB uses it for you

CRAB Server or Client

• Originally CRAB was only standalone. Ran from CLI
and interacted with Grid jobs directly

• Recently transitioning most use to CRAB Server

• “crab” now a client interface to a server which submits
and tracks jobs. Server is based on ProdAgent

• Recommended way to work now

• Standalone still exists. Mostly useful to interact
with local schedulers (condor, PBS)

• Going away at some point. (Will discuss later.)

CRAB Server Overview
CRABServer

Client-server architecture

A server is placed between the user and the Grid to perform
a set of actions for the user

Main advantages

Automates (as much as possible) the whole analysis work
flow (reduced babysitting)

Improves the scalability of the system

Client-server implementation is transparent to the end
users

Interface, installation and configuration procedures and
usage remain the same as for standalone

GRID certificates

• CMS uses GRID certificates and a dedicated
Virtual Organization (VO) management to have
better access control for specific tasks/groups

• Your GRID certificate is important, follow all rules,
don’t let it expire!

• Can be a pain the first time, but then it's over

Underlying analysis model

 User runs interactively on small samples in the local environment
to develop the analysis code and test it

Once ready the user selects a large (whole) sample to submit the
 very same code to analyze many more events

 The results are made available to the user to be analyzed
interactively to produce final plots

How to configure CRAB

CRAB is controlled by a configuration file: crab.cfg. This file must
be in the same directory as the CMSSW .py configuration file for

the analysis code.

•crab.cfg is structured into sections, each with related settings.
The sections are:

[CRAB]
[CMSSW]
[USER]
[GRID]

•Template crab.cfg files, with comments on all the configuration
parameters, are distributed with CRAB. ($CRABDIR/python/crab.cfg
and full_crab.cfg)

• Only some parameters are mandatory, others depend on the user's
specific needs.

Basic configuration options

jobtype: defines the kind of job CRAB should run (cmssw)

scheduler: defines which flavor of GRID or batch middleware will be used by CRAB
(condor_g, glite, condor, pbs)

use_server: start CRAB in server mode (recommended)

datasetpath: identifies the dataset you want to access. Enter just the datasetpath
(string format /primary/process/tier) obtained from the DBS discovery page

pset : The name of the CMSSW .py file of your CMSSW job. This file must be in the
same directory as the CRAB configuration file (crab.cfg).

total_number_of_lumis: Total number of lumi sections to be processed by CRAB. If set to
-1, all lumis of the selected dataset are processed

lumis_per_job : Number of lumis per job. CRAB will create as many jobs as needed to
process the total_number_of_lumis

[CRAB]

[CMSSW]

Basic configuration (2)

return_data : Defines the way CRAB handles user output. Default of 1 uses the GRID middleware sandbox.

copy_data : Output is staged out to defined SE, default is 0 to not stage out

storage_element : Defines the SE url for stage-out.

storage_path : Path on the selected SE for stage-out.

This is where scheduler specific information resides no matter what
scheduler you use.

se_white_list : List of SE where the job can run.

se_black_list : List of SE to ban.

ce_white_list : List of CE to allow.

ce_black_list : List of CE to ban.

[USER]

[GRID]

Datasetpath

• Can check that your selected dataset exists at least at one site using the DBS
discovery page

• During creation, CRAB contacts DBS to collect all information needed for job splitting
and job preparation. (Number and location of files, blocks, events.)

• If needed, sites can be excluded or selected for submission (parameters in [EDG]
section of crab.cfg):

• Primary selection depends on SE name given on DBS discovery page:

• se_black_list: exclude sites

• se_white_list: selects sites

• Secondary selection depends on CE name given during CRAB data discovery (see submission):

• ce_black_list: excludes CEs of sites

• ce_white_list: selects CEs of sites

• “se_white_list = US_T2” selects all SEs with US_T2_* in SiteDB

[GRID]

se_white_list = unl.edu

[GRID]

se_white_list = fnal.gov
ce_white_list = cmslcgce2.fnal.gov

Output handling

• CRAB has two ways of handling output:

• The output sandbox

• Copy files to a dedicated storage element (SE)

• Like the input sandbox, the output sandbox is limited in
size (stand-alone only):

• Input Sandbox: 10 MB

• Output Sandbox: 50 MB

• TRUNCATED if it exceeds 50 MB corrupt files

• Rule of thumb:

• If you would like to get event files back, please use a
storage element

Data Publication
• CRAB allows you to publish the results of your

work and share with others through DBS

• Requirements

• SE that allows user copied data

• Must be able to place into CMS's LFN structure

• A private DBS server (several centrally maintained)

• Need to know dbs_url

• Must know at submission time that you will want to
publish data

• Full instructions are at
https://twiki.cern.ch/twiki/bin/view/CMS/SWGuideCrabForPublication

How to run CRAB
The basic CRAB workflow is organized into 4 steps:

• Job Creation
• Job Submission
• Check job status
• Output retrieval

Job Creation: crab –create
At this level CRAB interacts with the DBS system, organizes the jobs of the task according to
the user's job splitting parameters, packs the users specific code(/lib /module /data),
prepares the script to configure the remote environment, and (using BOSS) prepares the jdl
file to communicate with the RB

It also creates the working directory which is organized in 4 subdirectories named:

 /job : CRAB specific stuff
 /log : CRAB log file location
 /res : default results destination
 /share : CRAB and scheduler specific

How to run CRAB (2)

Job submission: crab –submit
The submission uses the previously created CRAB project to submit the jobs.
Before the real submission, CRAB always checks for available resources preventing the
submission of unmatched jobs. By default all created jobs are submitted.

Job status: crab –status
This command checks the status of all jobs in the CRAB project.
For each job CRAB prints on the screen the job id, scheduler status, site hosting the jobs,
cmssw exit code, & job exit code. The output gives also a summary with a list of job IDs
sorted by status categories.By default the status of all jobs is checked.

Job output : crab –getoutput
This command retrieves the output of all jobs of a CRAB project which have status
“Done”. By default the retrieved output files are copied in the “res” sub-dir of the CRAB
workingdir. Included are the standard output and error of the jobs (CMSSW stdout and
stderr) and the output files specified in crab.cfg.

Even if your job fails, run crab -getoutput. Otherwise your output clogs up a server.

How to run CRAB (3)

For submit, status and getoutput the user can overwrite the
default behavior selecting individual jobs by:
All : default behavior
1,2,3 : individual jobs
1-3 : job range
The latter two can be combined using commas (e.g. 1,2-4)

Using a specific directory for a CRAB project each
command must be executed as:
 crab –<command> -c <directory>

Installation
• A fully functional installation of CRAB requires the

GLite middleware.

• To support EEGE sites (European T1/T2)

• Sometimes not easy, but it is not too bad

• OSG client only can work for certain stand-alone
configs or for communication with the server

• Not supported, not really recommended

Additional CRAB features

 crab -kill
 Kill jobs which have been submitted to the grid.

 crab -resubmit and -forceResubmit
 Resubmit exactly the same job (which is either abort or killed)

crab –printId
 Find the GRID id of specific jobs (can be useful for debugging purposes)

 crab -postMortem
 Find more info about aborted jobs which may help in debugging problems.

Current Development

• CRAB must constantly keep up with changes to
CMSSW and Grid middleware. Unless you have a
very good reason, try to stay current with releases

• CRAB 2.x (current version) is now in maintenance
mode. Only important bug fixes are being made

• CRAB3 is in the planning stages. CRAB3 will be
“server only” and will be based on WMAgent, the
new CMS framework for running all production and
analysis jobs

• No more direct submission, including condor/pbs

• Allows us to consolidate limited development effort

Debugging CRAB
• GRID analysis requires many different systems to work hand-in-

hand (Sites, CEs, SEs, dCache, Castor, DBS, BDII, (and all the
other acronyms) ...). Many unforeseen problems can arise at the
boundaries between those many systems.

• CRAB provides a common user interface and tries to notify the
user of all problems. This is hard and CRAB is not always
successful.

• Due to the complexity of GRID analysis, CRAB is not always the
source of the problem (rarely actually). Most of the time,
systems don’t behave properly or don’t play nicely together

• Backup slides:

• give hints on how to avoid problems beforehand

• list common problems and errors

• try to help debugging problems and errors

How to get CRAB support
 Best source for user support is the CRAB feedback hypernews:

https://hypernews.cern.ch/HyperNews/CMS/get/crabFeedback

All CRAB questions and suggestions can be posted to this forum,
 CRAB developers try to solve the problems and give solutions.
 User suggestions can help improve the tool.

A troubleshooting guide is at
https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookGridJobDiagnosisTemplate

(still under construction)

Questions not directly related to CRAB (GRID related problems,
CMSSW specific problems, etc…) should be referred to other
hypernews forums

Additional Documentation:
https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideCrab

https://hypernews.cern.ch/HyperNews/CMS/get/crabFeedback
https://twiki.cern.ch/twiki/bin/view/CMS/WorkBookGridJobDiagnosisTemplate
https://twiki.cern.ch/twiki/bin/viewauth/CMS/SWGuideCrab

 Backup slides

Debugging Overview
• We'll follow the four main CRAB steps:

• create

• submit

• status

• getoutput

• But a common source of problems is completely
avoidable: submitting CMSSW code with
bugs/misconfigurations, so

Always test your code locally first!!

Job length

• Choose your job-splitting carefully:

• Don’t write too much output (<= 2 GB)

• Don’t run too long (8 - 24 hours jobs, 8 hours is
optimal)

• Estimate your running time from your local tests
and help GRID sites to put your job in appropriate
queues

This is not always required but helps avoid problems in some
cases

[EDG]

cpu time and wall_clock_time(=real time) in minutes. Written into the jdl file
#max_cpu_time = 60
#max_wall_clock_time = 60

Output handling

• Exceeding the output sandbox size is a common source of
user problems

• The output sandbox is TRUNCATED when exceeding 50
MB resulting in corrupted files

• Rule of thumb:

• If you would like to get CMSSW ROOT files back, please
use a storage element

• If you only need histograms or ntuples back, sandbox is
probably OK

SE Interaction

• The GRID is based on distributed facilities accessible to a very large
number of users and uses proxies of certificates to authenticate its
users against services (CEs, Ses)

• The proxy is mapped against a local account which is different from service
to service

• When you use a storage element within CRAB, it is not actually your
user account which transfers the file but your proxy and the account
mapped to your proxy on your SE

• So it is important that the target directory on your SE (owned by your
account) is group-writable so that the mapped account of your proxy
can write to it

• Examples:
CASTOR: rfchmod +775 /castor/cern.ch/user/u/username/subdir
dCache: chmod +775 /pnfs/cms/WAX/resilient/username/subdir

Creation: job splitting

• Datasets are grouped by:

• DataSet → Block → File

• CRAB job splitting obeys block borders, meaning
that a single job of a project cannot span two
blocks

• Sometimes leads to more jobs than requested

• Blocks of a single DataSet can be located at
different sites

• If using white_list and black_list statements, jobs
for only parts of the DataSet can be created.

Creation: TarBall creation
• CRAB ships the user’s code to the site for

execution. This tarball contains:

• all libraries of the CMSSW user project directory

• all files in all data directories in the src directory of the
user’s CMSSW project directory

• To not exceed CRAB’s internal limitation of
10MB input sandbox:

• Don’t have too many unused libraries in your local
project

• Don’t have any unnecessary files in any data
directories, especially don’t execute CRAB from within
a data directory

Submission
• During submission job requirements are

• Installed CMSSW software version

• List of SEs hosting requested DataSet

• Additional CE requirements according to
ce_black/white_lists

• Production status of site (passing SAM tests)

• If compatibility check fails, you can check the
software installation status at:

• http://cmsdoc.cern.ch/cms/ccs/wm/www/Crab/cmsCE.html

• http://home.fnal.gov/~burt/all_cmssoft.html

• OSG-Only: http://home.fnal.gov/~burt/osg_cmssoft.html

http://cmsdoc.cern.ch/cms/ccs/wm/www/Crab/cmsCE.html
http://home.fnal.gov/~burt/all_cmssoft.html
http://home.fnal.gov/~burt/osg_cmssoft.html

Submission

• If CRAB cannot find any compatible resources:

• the site(s) might fail tests which continuously check the status of the site (called
Site Availability Monitoring, SAM). If failing a defined number of tests, the site is
not receiving any jobs anymore till the problems are fixed and the tests pass
again. You can check site test status here:

• https://lcg-sam.cern.ch:8443/sam/sam.py

• If the job cannot be submitted at all because no compatible resources are found
and the expected sites from the data discovery fail SAM tests, wait till the
problems get fixed and submit again after a while.

crab. Matched Sites :['cmslcgce.fnal.gov', 'cmslcgce2.fnal.gov']
crab. Found 2 compatible site(s) for job 1
crab. Matched Sites :['ce102.cern.ch', 'ce106.cern.ch', 'ce107.cern.ch', 'ce113.cern.ch',
'ce119.cern.ch', 'ce121.cern.ch', 'ce120.cern.ch', 'ce114.cern.ch', 'ce123.cern.ch', 'ce108.cern.ch',
'ce118.cern.ch', 'ce122.cern.ch']
crab. Found 12 compatible site(s) for job 3

crab. No compatible site found, will not submit job X

https://lcg-sam.cern.ch:8443/sam/sam.py

Status check

Important information for debugging: site the job ran
on (E_HOST)

crab. crab (version 1.5.2) running on Mon Jun 11 17:51:55 2007

crab. Working options:
 scheduler edg
 job type CMSSW
 working directory
/afs/cern.ch/user/s/spiga/scratch0/Tutorial/CMSSW_1_3_1/src/Demo/MyTrackAnalyzer/test/crab_0_070611_17401
4/

crab. Checking the status of all jobs: please wait
Chain STATUS E_HOST EXE_EXIT_CODE JOB_EXIT_STATUS

1 Running cmslcgce2.fnal.gov
2 Running cmslcgce.fnal.gov
[..]
9 Running cmslcgce.fnal.gov
10 Running cmslcgce.fnal.gov

>>>>>>>>> 10 Total Jobs

>>>>>>>>> 10 Jobs Running
 List of jobs: 1,2,3,4,5,6,7,8,9,10
crab. Log-file is
/afs/cern.ch/user/s/spiga/scratch0/Tutorial/CMSSW_1_3_1/src/Demo/MyTrackAnalyzer/test/crab_0_070611_17401
4/log/crab.log

Status check

• Important to know: The difference between job status
“aborted” and “done”:

• “done” jobs actually ran at the site while “aborted” jobs
indicate a problem with the GRID infrastructure (mainly RB).

• The cause of job aborts can be investigated using

• producing an ascii file with the output of

• summarizing the cause of the problem

• When looking for help in case of aborted jobs, it’s usually a good
idea to provide the postMortem output for debugging purposes

crab -postMortem <job>

edg-job-get-logging-info -v 2 <https grid-id>

Getoutput

• One error which might occur is related to the RB:

• One possible reason is a full disk on the RB. This
problem might go away by itself. If not report it
and deactivate / change the RB configuration

Error caught Unable to retrieve the status for:
https://gdrb03.cern.ch:9000/DYZIjEKTNRiB44am8d7RBQ
 edg_wll_JobStatus: Connection refused: edg_wll_ssl_connect(): server closed the
connection, probably due to overload
 crab. Unable to retrieve the status for:
https://gdrb03.cern.ch:9000/DYZIjEKTNRiB44am8d7RBQ
 edg_wll_JobStatus: Connection refused: edg_wll_ssl_connect(): server closed the
connection, probably due to overload

https://gdrb03.cern.ch:9000/DYZIjEKTNRiB44am8d7RBQ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

