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Introduction

• made preliminary investigation of three possible methods for charge separation (CS)
1. dipoles
2. RF deflection cavities 
3. bent solenoids

• idea: identify most promising approach first
make more detailed studies later 

• results on dipoles & RF cavities adapted from my NFMCC Friday talk (5 June 2009) 
• results on bent solenoids

some results adapted from the talk
some more recent simulations

• earlier study used “HEMC parameters”: εTN= 12 mm, εLN= 41 mm
≈NF front end with some transverse cooling
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1. Dipole model

• ICOOL is not an ideal tool for this example
uses Frenet-Serret coordinate system
one sign follows the curvature in the coordinate system
other sign has distorted looking distribution

• wrote new cartesian tracking routine for this study
(I would just use G4Beamline for this now)

• started with uniform rectangular dipole field
entrance beam normal to face
no vertical focusing

• used 30 cm radius exit holes for the two separated beams
• adjusted dipole  B L  to get ±31 cm center separation 
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Optimization
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• reasonable separation acceptance (~84%) for HEMC beam
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Exit plane distribution
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Phase space at exit window
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needs focusing, but that hurts separation ?
needs RF or longitudinal preconditioning,

but that stretches system out ?
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Dispersion at exit window
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Removing the dispersion (quads)

classic achromat
both bends must be in same direction
e.g. LQ=20 cm, BQ=0.34 kGs, rQ=30 cm

LD=64 cm, BD=7 kGs, d=20 cm

Configurations that produce 2 parallel beams

long channels
also need to include

focussing
RF cavities
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Dipole summary

• this is a possible approach
• further work needs a more realistic dipole model

fringe field
edge focusing

• need to incorporate focusing and RF into the channel 
• need to have proper matching from solenoid channel to dipole-quad          

channel and back again
• must include other parts of the system

matching beam to external channels
transporting beams apart
removing dispersion

• needs a lot more work
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2. Deflection cavity model

• avoids difficulty of introducing RF in other methods
• looked at several arrangements of TE and TM cavities
(1) string of TE cavities doesn’t work

violates Panofsky-Wenzel Theorem
confirmed in simulations using TE011 rectangular cavities

constant E field along x
(2) continuous string of TM cavities
(3) TM cavities with drift spaces in Alvarez-like arrangement

this scheme works best
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Alvarez layout

d • shield out field reversals with drift spaces

-+ +

λ1 / 2βc = n T
d / βc = m T

e.g. m = n = 1
d = λ1 / 2
T = λ1 / 2βc 

λ1/2

-+ + β

λ1 = 1.492 m = c / 201 MHz
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TM cavities

• try TM210 rectangular cavities
has BY field along particle axis

• same cavity mode used for crab crossing, but shifted in phase
• needs w > λ for resonance
• for 200 MeV/c    f=355 MHz, λ=84 cm
• cavity dimensions: d=25 cm, w=100 cm, h=77 cm
• each cell = 25 cm cavity + 50 cm drift
• problem: after particle is deflected it sees EZ => ∆pZ => phase error

beam’s eye view
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Small emittance beam

εTN=0.12 mm, εLN=0.41 mm
single bunch-pair
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• to get good separation for a train of 20 bunches
had to reduce emittances to εTN=0.05 mm, εLN=0.03 mm
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Full gaussian beam

no separation !!

Method is no good for us
-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y 
 [m

]

x  [m]

HEMC beam

εTN=12 mm, εLN=41 mm
single bunch-pair



15

3. Bent solenoid model

• tried using simple bent solenoid, ICOOL model BSOL(2)
• on-axis fields have ∆tanh(s) (or constant) dependence
• off-axis fields comes from multipole expansions 
• looked at channels with pairs of bent solenoids

first bent solenoid does the separation
second bent solenoid removes dispersion
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Schematic horizontal layout

Two exit pipes
separated vertically

Separation of exit channels
controlled by length of transports
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1st bent solenoid optimization

• used BSOL model 2 in ICOOL (use version ≥3.17)
• constant solenoid strength, no dipole field
• assumed trim coils to adjust divergences at exit apertures
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2nd bent solenoid optimization 

• linear correlation coefficient  r (y, pz)  is proportional to dispersion
• use BS to statistically remove dispersion
• use BY to keep central momentum at fixed y     (not required)
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Bent solenoid results with old HEMC beam
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• separation and transmission looked good
• Tr = 90% of entrance beam 
• could statistically remove dispersion
• main issue was emittance  growth 

εXN : 12 → 24 mm
εYN : 12 → 23 mm
εZN : 41 → 54 mm
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Recent simulations

• looked at charge separation later in the HEMC collider scenario
• assumed we have initial 6D cooling with a FOFO-snake
• start separation when εTN ~ 6 mm and εLN ~ 11 mm 
• used bent solenoid to do separation
• used analytic ICOOL model BSOL(2)
• assumed constant solenoid field strength along whole channel
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Layout

• both charges: RF(2) + BS1(3) = 5 m
• positive channel: D(1) + RF(1) = 2 m
• negative channel: D(3) + RF(3) = 6 m
• both charges: BS2(3) + RF(2) = 5 m

plan view elevation view
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Input match

• 2 m with 201 MHz RF and 1.9 T solenoid
• use RF cavities

to keep momentum fixed at 200 MeV/c
to get upright longitudinal ellipse after BS1
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BS1 properties

• L = 3 m, BS=1.9 T, BD=0, h=0.30 m-1

• exit holes have radius of 25 cm
• 12 cm separation between edges of positive and negative holes
• introduces dispersion on beam
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Transport properties

• want final beams ~3 m apart transversely
• use drifts to get away from congested areas
• then use RF cavities

to keep momentum fixed
to get upright longitudinal ellipse after BS2
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BS2 properties

• L=3 m, BS=1.9 T,  h=-0.30 m-1

• BD has ∆tanh(s) shape
• BD = -0.25 T for positives, =+0.25 T for negatives

longitudinal
phase space
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Output match

• use 2 m of RF
• f=201 MHz, r=25 cm
• want upright longitudinal phase space at end
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Effect on performance

• no problem with transmission
• issue is emittance growth

model L εTN εLN Tr

[m] [mm] [mm] [%]

BS20p 12 6.1 → 8.5 11.1 → 12.9 98.3

BS20n 16 6.1 → 9.1 11.1 → 15.1 97.3
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G4Beamline layout

H-FOFO
snake

Guggenheims
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Details of bent solenoids
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Conclusions

• a dipole system is possible
but needs a lot more work
there is no clear advantage over using bent solenoids

• RF separation is not suitable for our large emittance beams
• bent solenoid channels look most promising for our problem

incorporate focusing with separation in a natural way
• issues for bent solenoid simulations

how to reduce the emittance growth?     cf. Bob’s talk
how realistic is the BSOL(2) model in ICOOL?

eventually need a G4Beamline simulation 


