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0) PREFACE

0.1 Units

When discussing the motion of particles in magnetic fields, I will use MKS units for lengths and

magnetic fields and time, so c ≈ 3 108 (m/sec). But momentum, energy, and mass will be

expressed in ”electron Volts”. The unit of charge e is plus or minus one.

In these units, the bending radius ρ (m) in a field B (T), of a particle with unit charge is:

ρ =
p

B e c
which for a positive charge gives ρ =

p

B c

In practice, I will often omit the e, meaning that I am referring by default to positive particles

e.g. the radius for a 3 GeV/c particle in 5 Tesla is

ρ =
3 109

5 × 3 108
= 2m
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0.2 Useful Relativistic Relations

dE = βv dp (1)

dE

E
= β2

v

dp

p
(2)

dβv =
dp

γ2
(3)

I use βv to denote v/c to distinguish it from the Courant-Schneider or Twiss parameters β⊥

3



0.3 Emittance

normalized emittance =
Phase Space Area

π m c

The phase space can be transverse:px vs x, py vs y, or longitudinal ∆pz vs z, where ∆pz and

z are with respect to the moving bunch center.

If x and px, or y and py, are both Gaussian and uncorrelated, then the area is taken to be that of

the upright ellipse with radii equal to the rms values in x and x’. When the beams are symmetric

in x and y we often use the terms σ⊥ = σx = σy, ε⊥ = εx = εy, σ‖ = σz, and ε‖ = εz

ε⊥ =
π σp⊥σ⊥
π mc

= (γβv)σθσ⊥ (π m rad) (4)

ε‖ =
π σp‖σz

π mc
= (γβv)

σp
p
σz (π m ) (5)

ε6 = ε2⊥ ε‖ (π m)3 (6)

Note that the π, added to the dimension, is a reminder that the emittance is phase space/π

The ”rad” in the dimensions is in by convention only and has no real meaning
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0.4 Beta⊥(beam) of a beam of many particles
x’

x

Upright phase ellipse in x′ vs x,

β⊥ =


width

height
of phase ellipse


 =

σx
σθ

(7)

Then, using emittance definition:

σx =

√√√√√ε⊥ β⊥
1

βvγ
(8)

σθ =

√√√√√
ε⊥
β⊥

1

βvγ
(9)
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0.4.1 Beta⊥(beam) at a focus

σx(z) =
√
(σxo)2 + (σθ z)2

since σθ = σx(0)/β⊥(o)

σx(z) = σx(o)

√√√√√√1 +


 z

β⊥




2

and since σx =

√√√√√
β⊥ ε⊥
βvγ

∝
√
β⊥

β⊥(z) = β⊥(o)


1 +




z

β⊥(o)




2

 (10)
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0.4.2 Beta⊥(lattice) as introduced by Courant & Schneider

β⊥(beam) above was defined by the beam, but a lattice can have a β⊥(lattice) that may or may

not ”match” a beam.

e,g. if continuous inward focusing force, as in a current carrying lithium cylinder (lithium lens),

then there is a PERIODIC solution:

z

u
B

I

d2u

dz2
= −k u u = A sin




z

β⊥(lattice)


 u′ =

A

β⊥(lattice)
cos




z

β⊥(lattice)




where β⊥(lattice) = 1/
√

k and λ = 2π β⊥(lattice)

This particle motion is also an ellipse and

width

height
of elliptical motion in phase space =

û

û′
= β⊥(lattice)
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Matching

If we have many particles withβ⊥(beam) = β⊥(lattice) then all particles move arround the

ellipse, and the shape, and thus β⊥(beam) remains constant, and the beam is ”matched” to this

lattice.

If the beam’s β⊥(beam) 6= β⊥(lattice) of the system then β⊥(beam) of the beam oscillates

about β⊥(Lattice): often refered to as a ”beta beat”.
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1) SOLENOID FOCUSING

0.4.3 Motion in Long Solenoid

Consider motion in a fixed axial filed Bz, starting on the axis O with finite transverse momentum

p⊥ i.e. with initial angular momentum=0.

ψ

φ = ψ
2

ρ

r

y

x

O

s⊥

pO
ρ =

p⊥
ec Bz

(11)

The projected distance along the circumference:

s⊥ = ψρ = 2φρ

The corresponding distance along the axis:

z =
p‖
p⊥

s⊥ =
p‖
p⊥

2φρ

so φ =
z

2ρ



p⊥
p‖


 =

z

2


ecBz

2p⊥






p⊥
p‖


 =

z

2



ecBz

p‖




For ψ < 180o φ < 90o : u = 2ρ sin


ψ

2


 = 2ρ sin(φ)

so u = 2ρ sin




z

β⊥(lattice)


 where β⊥(lattice) =

2p‖
ecBz

(12)

i.e. sinusoidal motion about the axis with λ = 2πβ⊥(lattice) (13)
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0.4.4 Larmor Plane

If The center of the solenoid magnet is at O, then consider a plane that contains this axis and

the particle. This, for a particle with initially no angular momentum, is the ’Larmor Plane:

O

y

x

ρ

r

u

λhelix

λLarmor

y

z

u

z

y = 1 − cos(ψ)

u = sin(ψ) (14)

φ =
ψ

2
so λ(helix) =

λ(lattice)

2
β⊥(helix) =

β(lattice)

2
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0.4.5 Focusing Pseudo Force

In this constant B case,

u = 2ρ sin




z

β⊥(lattice)




d2u

dz2
= −




2ρ

β2
⊥


 u

so
d2u

dz2
= −


ecBz

2 pz




2

u (15)

i.e. The motion in the larmor plane corresponds to the motion of a particle with an inward

force proportional to the distance u from the axis. i.e. it is an ideal focusing force.

This result can also be obtained by noting that the momentum pO perpendicular to the radius

r is from equation 12 and 11

pO = p⊥ sin(φ) = p⊥
u

2ρ
=

uecBz

2
(16)

which acting on Bz gives an inward curvature. Though derived here for a constant Bz Equations

15 and 16 are true also for any axi-symmetric fields, constant or varying.

Note: the focusing ”Force” ∝ (e Bz)
2 so it works the same for either sign of B, either charge

and ∝ 1/p2
z. Whereas in a quadrupole the force ∝ 1/p So solenoids are not good for high p,

but beat quads at low p.

Note however that it depends on pz, not p. For large amplitude motion pz < p and there is

spherical aberration: large amplitudes focused more strongly than smaller amplitudes.
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0.4.6 Entering a solenoid from outside

We will now look at a simple non-uniform Bz case. Let a particle start from the axis with finite

transverse momentum, but no angular momentum. After some distance with no field, it reaches

a radius u and then enters a solenoid with Bz. As it enters the solenoid it crosses radial field

lines and receives some angular momentum.

∫
Br dz =

r Bz

2

ra
d
iu

s
r

z

φ = 2π r
∫
B⊥ d`

φ = π r2 Bz

-5.0 -2.5 0.0 2.5 5.0

-2.5

0.0

2.5

Br

∆p⊥

∆p⊥ = c
∫
Br dz =

Bz r c

2
(17)

Sof for our case with zero initial transverse momentum,

p⊥ = c
∫
Br dz =

Bz r c

2

Which is the same as eq.16, and will lead to the same inward bending (eq.15), as when the

particle started inside the field. In fact equations 15 and 17 are true no matter how the axial field

varies
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0.4.7 Canonical Angular momentum

In vacuum with axial symmetry, a particle will have a conserved ”Canonical Angular Momentum”

Mo equal to the angular momentum outside the axial fields.

Mo = p⊥ r (Outside the field)

Inside a varying field Bz(z), the real angular momentum will, from eq. 17, be:

M = Mo +
r2 Bz c

2

But in the rotating Larmor Frame the angular momentum is always just the Canonical angular

momentum, and motion in that frame has only inward focusing forces, with no angular kicks.
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2) NEUTRINO FACTORY INTRODUCTION

• Requires maximum number of muons

• Can use large acceptance acceleration and storage

• Cooling only if it increases numbers of muons accepted

• Japanese study had used no cooling

• Study 2a and ISS (International Scoping Study) gained 1.7 by cooling

• Neither used longitudinal cooling in part because:

– phase rotating large dp/p into long or multiple bunches with small dp/p ok
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Neutrino Factory
Schematic

• Not to scale
Overall length of order 1 km

• Acceleration in multiple stages
not indicated

• µ+ and µ− coexist in capture, ro-
tate, & cooling

• They go in opposite directions in
”dog bone” RLA

• and in the Storage Ring
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#1 Target and Capture and Phase Rotate

• Liquid mercury Jet ’destroyed’ on every pulse

• 20 T Solenoid captures almost all low momentum pions

• Field subsequently tapers down to approx 2 T

• Target tilted to maximize extraction of pions

• MERIT Experiment at CERN will test this concept
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Phase Rotation Schemes
To reduce momentum spread at expence of multiple bunches

Conventional with LF RF or Induction Linacs (Studies 1&2)

dt

dE

Drift Ind. Linac ( Buncher )If required

Neuffer Bunched Beam Rotation with 200 MHz RF (Study 2a, ISS)

dt

dE

Drift RF Buncher RF Rotate

• RF frequency must vary along bunching channel
(high mom. bunches move faster than low)

• Higher freq RF is cheaper than Induction Linacs

• Bunched Beam method captures both signs
in interleaved bunches
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Phase Rotation Simulation
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Cooling

ra
di

i
(c

m
)

length (m)
0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6
100
A/mm2
SC Coil

200 MHz RF
16 MV/m

Be on 1 cm LiH

m
u/

p

Length of Cooling (m)

All muons

30 pi mm

15 pi mm

0 50 100 150 200
0.00

0.25

0.50

0.75

Turns in Ring Cooler

m
u/

p

0 3 6 9 12 15
0.0

0.1

0.2

0.3

0.4

All

15 pi mm (As in Study 2)

30 pi mm (As in Japanese )

• No advantage in longer cooling No advantage in 6D ring cooling

• With 30 pi mm acceptance (S2a
& ISS ), only moderate cooling

• Cooling in FOFO lattice

• Use LiH rather than Hydrogen

• More cooling needed if 15 pi mm
(S1 & s2)
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3) MUON COLLIDER INTRODUCTION

• Requires strong transverse cooling because

– To get very small emittances
L ∝ 1/σ2

r ∝ 1/ε⊥

• Requires moderate longitudinal cooling because

– Short bunch
because L ∝ 1/σr ∝ 1/β⊥ and req σz ≤ β⊥

– Small dp/p
because Collider ring with small β⊥ is difficult

• Requires few intense muon bunches because

– Many muons per bunch
L ∝ N2

µ

– Relatively few total muons
because of neutrino radiation

• Very different from Neutrino Factory,

• But they can both use same front end
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Luminosity Dependence

A little more compicated than above due to beam-beam tune shift limitations

L ∝ nturns fbunch
N2

µ

σ2
⊥

∆ν ∝ Nµ

ε⊥

L ∝ Bring Pbeam ∆ν
1

β∗

• Higher L/Pbeam requires lower β⊥ or correction of ∆ν

• Lower emittances do not directly improve Luminosity/Power

• But for maximum plausible Nµ emittances are small
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Collider Parameters

Current Snowmass Extrapolation
C of m Energy 1.5 4 8 TeV
Luminosity 1 4 8 1034 cm2sec−1

Beam-beam Tune Shift 0.1 0.1 0.1
Muons/bunch 2 2 2 1012

Ring <bending field> 5.2 5.18 10.36 T
Ring circumference 3 8.1 8.1 km
Beta at IP = σz 10 3 3 mm
rms momentum spread 0.09 0.12 0.06 %
Muon Beam Power 7.5 9 9 MW
Required depth for ν rad ≈135 135 540 m
Efficiency Nµ/Nµo 0.07 0.07 0.07
Repetition Rate 12 6 3 Hz
Proton Driver power ≈4 ≈ 1.8 ≈ 0.8 MW
Trans Emittance 25 25 25 pi mm mrad
Long Emittance 72,000 72,000 72,000 pi mm mrad

• Emittance and bunch intensity requirement same for all examples
Because beam-beam tune shift is independent of energy

22



Capture & Cooling
Schematic

• Not to scale
Overall length of order 2 km

• Acceleration in multiple stages
not indicated

• We will [ook at numbered com-
ponents later
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Emittances vs. Stage
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# s 3 4 6 7 8: 6D Cooling in ”Guggenheim” helices

• RFOFO lattices

• Bending gives dispersion

• Wedge absorbers give emittance exchange → Cooling also in longitudinal

• Use as ’Guggenheim’ helix

– Because bunch train fills ring

– Avoids difficult kickers

– Better performance possible
by tapering (Not yet assumed)

ra
di

i
(c

m
)

length (m)

66

0 2 4 6
0

25

50

75 -66 66 -66

RFOFO Lattice ’Guggenheim’
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#5 Bunch Merging

• Luminosity proportional to muons per bunch squared

• Few large bunches required

• Capturing to one large bunch would have required low frequency rf
(≈ 30 MHz) with low gradients and inefficiency

• We thus:

– Capture into multiple bunches at 201 MHz

– Cool them till small enough to:

– Merge them and recapture at 201 MHz

– Re-cool the merged bunches

Merging Scheme

dt

dE Phase rotate
each bunch→

Chirp with
low freq RF→

Drift
and recapture→
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One Dimensional Bunch Merging Simulation

• Drifts in 1 T wigglers,
simulated in ICOOL
vs amp and mom

• rf:
1) at 200 MHz + 2 harmonics
2) at 5 MHz + 2 harmonics
Simulated off line
with parameters from ICOOL
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#9 Transverse Cooling in Very High Field Solenoids
• Lower momenta allow strong transverse cooling, but long emittance rises:

• Effectively reverse emittance exchange

Stage

Trans Emit (mm mrad)

0 2 4 6

1

10

100

◦
◦ ◦ ◦ ◦ ◦ ◦

Energy (MeV)

Emit Long (mm rad)

◦
◦

◦
◦

◦
◦

◦

• 50 T HTS Solenoids

– Layer wound allowing current to vary with radius

– Vary ss support with radius to keep strain constant

– Existing HTS tape at 4.2 deg. gave 50 T with rad=57 cm

• 7 solenoids with liquid hydrogen

• ICOOL Simulation ( Ideal Matching and reacceleration, Transmission 97% )

28



Details of 50 T Solenoid

• Design uses BSCCO tape (conductor cost now 2.7 M$, but falling)

• Stored energy 141 MJ (requires multiple local quench protections)

• Questions raised about stress cycling in BSCCO

• YBCO claimed to be much better, but more sensitive to field directions

• Needs characterizations of materials

• Highest field HTS now under construction is only 30 T

• But existing hybrid (Cu and SC) 45 T magnet using 20 MW
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Acceleration

• Hybrid SC and pulsed synchrotron 400-750(930) GeV (in Tevatron tunnel)

• All RLAs with ILC cavities is an alternative but more expensive
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Collider Ring (Y. Alexahin E. Gianfelice-Wendt)

Lattice Acceptance

• β∗ = 1 cm ∆p/p ≈ 0.6 %
More than adequate for rms dp/p=0.09 %

• ∆x, y ≈ 2σ at 25 mm mrad emittance
Will require scraping of beam (cut at 1.75 sigma loses only 5% of luminosity)
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Ongoing Studies

• Fuller simulations

• Space charge tune shifts (moderate, but not in simulations)

• Possible breakdown of vacuum RF in the specified magnetic fields

– Being studied experimentally by MUCOOL Collaboration

– Possible solution 1) Gas filled cavities
works for earlier cooling lattices experiment needed for beam breakdown

– Possible solution 2) Open Cavities with coils in irises (see next)
works in simulation experiments needed for breakdown

• Planar wiggler lattice to replace Guggenheims (cools both muon signs)

• Fast Helical cooling in hydrogen gas
Another alternative to RFOFO Guggenheims being studied by Muons Inc
but difficult to introduce required rf

• Design of 50 T solenoids

• Use of more, but lower field (e.g. 35 T) final cooling solenoids

• Design detector shielding
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Open cell rf with coils in irises

• B field effect on open cavity much less
average field/surface fields ≈ 1/2
but open cavity still better at 3 T

• Should be even better if coils in irises

• Max E field ⊥ to B

ra
di

i
(c

m
)

length (m)

71

0 2 4 6
0

20

40

60

61 -61 -71 71 61 -61 -71
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Conclusion

• New 1.5 TeV Collider lattice has more conservative IP parameters

– Luminosity 1×1034 achieved with bunch rep rate ≈12 Hz

– Collider ring must be deep (eg 135 m of ILC) to control neutrino radiation

– Proton driver (≈ 4 MW) is challenging

• Complete cooling scheme achieves required muon parameters

– All components simulated (at some level) with realistic parameters

– But much work remains

• Possible problem with rf breakdown in specified magnetic fields

– Solutions with gas ?

– Open cell rf ?

• Lower cost acceleration possible using pulsed magnets in synchrotons

– Rings fit in Tevatron tunnel

– Second ring uses hybrid of fixed and pulsed magnets

34



1 TRANSVERSE IONIZATION COOLING

p‖ less
p⊥ less

���������������*

p‖ restored
p⊥ still less

����

����:

AccelerationMaterial

1.1 Cooling rate vs. Energy

(from eq 4) εx,y = γβv σθ σ⊥

If there is no Coulomb scattering, or other sources of emittance heating, then
σθ and σ⊥ are unchanged by energy loss, but p and thus βγ are reduced. So the
fractional cooling dε /ε is (using eq.2):

dε

ε
=

dp

p
=

dE

E

1

β2
v

(18)

which, for a given energy change, strongly favors cooling at low energy.
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1.2 Heating Terms

ε⊥ = γβv σθ σ⊥

Between scatters the drift conserves emittance (Liouiville).
When there is scattering, σ⊥ is conserved, but σθ is increased.

∆(ε⊥)2 = γ2β2
v σ

2
⊥∆(σ2

θ)

differentiating the LHS and substituting for σ⊥ from eq. 8

2ε⊥ ∆ε⊥ = γ2β2
v


ε⊥β⊥
γβv


 ∆(σ2

θ)

∆ε⊥ =
β⊥γβv

2
∆(σ2

θ)

e.g. from Particle data booklet

∆(σ2
θ) ≈



14.1 106

pβv




2
∆s

LR

∆ε⊥ =
β⊥

γβ3
v

∆E






14.1 106

2µ




2
1

LRdE/ds




Defining

C(mat,E) =
1

2



14.1 106

µ)




2
1

LR dγ/ds
(19)
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then
∆ε⊥
ε⊥

= ∆E
β⊥

ε⊥γβ3
v

C(mat,E) (20)

Equating this with equation 18 ∆E
1

β2
v E

= ∆E
β⊥

ε⊥γβ3
v

C(mat,E)

gives the equilibrium emittance ε⊥o : ε⊥(min) =
β⊥
βv

C(mat,E) (21)

At energies for minimum ionization loss: As a function of energy:

material T density dE/dx LR Co
oK kg/m3 MeV/m m 10−4

Liquid H2 20 71 28.7 8.65 38
Liquid He 4 125 24.2 7.55 51
LiH 300 820 159 0.971 61
Li 300 530 87.5 1.55 69
Be 300 1850 295 0.353 89
Al 300 2700 436 0.089 248

C
o
n
sa

ta
n
t

C
(1

0−
4 )

Kinetic Energy (MeV)

Hydrogen

10.0 102 103 104
0

25

50

75
Lithium
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Clearly Liquid Hydrogen is far the best material, but has cryogenic and safety
complications, and requires windows which will significantly degrade the perfor-
mance. At lower energies C is much lower but there is then longitudinal (dp/p)
heating.

1.3 Rate of Cooling with finite Coulomb scattering

dε⊥
ε⊥

=


1 − ε⊥min

ε⊥


 dp

p
(22)

This would suggest that it was always desirable to have ε⊥(min) as small as
possible in order to maximize the rate of cooling. But having ε⊥(min) � ε⊥
requires excessive angular acceptance (see following).
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1.4 Beam Divergence Angles and required angular acceptance

σθ =

√√√√√
ε⊥

β⊥ βvγ

from equation 21

ε⊥(min) =
β⊥
βv

C(mat,E) so β⊥ =
ε⊥(min) βv
C(mat,E)

and substituting this

σθ =

√√√√√√




ε⊥
ε⊥(min)






C(mat,E)

β2
vγ




If ε⊥(min)/ε⊥ is made too small, the rms divergence angles σθ becomes too large, but if the

fraction is too large, the cooling rate is reduced.

For a cooling rate of 50 % of maximum (ε⊥(min)/ε⊥ = 0.5) and an aperture at 3 σ, the

angular aperture A of the system must be

A = 3
√

2

√√√√√√
C(mat,E)

β2
vγ

(23)

Note that in order to maintain efficient cooling and avoid excessive acceptance requirement, the

ratio ε⊥(min)/ε⊥ must be held constnat. This requires that the focusing β⊥ must be continuously

reduced as ε⊥ falls. Thus either frequent changes in the lattice, or a continuously cahnging

(tapered) lattice should be used. This is an argument against cooling in many turns in a ring.
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Apertures for hydrogen, lithium and berillium are plotted vs. energy below. These are very

large angles, and if we limit apertures to less than 0.3, then this requirement sets lower energy

limits of about 100 MeV (≈ 170 MeV/c) for Lithium, and about 25 MeV (≈ 75 MeV/c) for

hydrogen.
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0.75

hydrogen

Lithium Hydride
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Required acceptances:

• θ = 0.3 at 200 MeV/c in Hydrogen (as in RFOFO lattice) may be as large as is possible

• θ = 0.6 at 100 MeV/c in berylium (as in PIC & REMEX Lattices) looks very hard

• θ = 0.5 at 10 MeV in hydrogen (as in collider final cooling) may be ok in a continuous

solenoid
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1.5 Focusing Systems

1.5.1 Continuous Solenoid

In a solenoid with axial field Bsol (from eq 12)

β⊥ =
2 p

c Bsol

so from eq. 21

ε⊥(min) = C(mat,E)
2 γ mµ

Bsol c
(24)

• 45 T hybrid using 20 MW exists at NHFML

• 50 T HTS seems possible
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1.5.2 Current Carrying Rod

In a rod carrying a uniform axial current, the azimuthal magnetic field B varies linearly with the

radius r. A muon traveling down it is focused:

d2r

dr2
= −B c

p
= −


c

p

dB

dr


 r

so orbits oscillate with β2
⊥ =

γβv
dB/dr

mµ

c
(25)

If we set the rod radius a to be fap times the rms beam size σ⊥ (from eq.8),

σ⊥ =

√√√√√
ε⊥ β⊥
βvγ

if the field at the surface is Bmax β2
⊥ =

γβvmµ fap
Bmax c

√√√√√
ε⊥ β

γ βv

from which we get : β⊥ =


fap mµ

Bmax c




2/3

(γβv ε⊥)1/3

puting this in equation 21 ε⊥(min) = (C(mat,E))1.5

 fap mµ

Bmax c βv


 √

γ (26)

A maximum surface field of ≈ 10 T is set by breaking of containment pipe
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1.5.3 Compare Focusing as a function of the beam momentum
M

in
im

u
m

e
m

it
ta

n
c
e

(p
i
m

m
m

ra
d
)

Momentum (GeV/c)

4 5 6 7 8 9 2 3 4 5 6 7 8 9
0.1

2 3 4
1.0

2

4
6
8

10.0

2

4
6
8

102

2

4

103

Required for Muon Collider
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Heating
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Cooling

Li Lens ( 10 T Surface field)

Li Lens ( 18 T Surface field)

Solenoid ( 30 T)

Solenoid ( 50 T)

We see that at momenta where longitudinal emittance is not blown up (≈ 200 MeV/c) then

current Li Lens technology (≈ 10 T) is comparable to the highest plausible solenoid (≈ 50 T)

But if we allow longitudinal heating and use very low momenta (45-62 MeV/c or 9-17 MeV ):

• Even a 30 T solenoid beats the Li Lens

• A 50 T solenoid is comparable with a 16 T surface field Li Lens that may or may not be build

able
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1.6 Angular Momentum Problem in Solenoid Cases

In the absence of external fields and energy loss in materials, the angular momentum of a particle

is conserved.

But a particle entering a solenoidal field will cross radial field components and its angular

momentum (r pφ) will change (eq.17).

r ∆(pφ) = r ∆


c Bz r

2




so if there is no initial angular momentum then in the field Bz, in addition to the random

emittance fluctuations, there will be a coherent angular momentum:

pφ r =


c Bz r

2


 r

Material introduced to cool the beam, will reduce all momenta, both longitudinal and trans-

verse, random and average.

Re-acceleration will not change the angular momenta, so the average angular momentum will

continuously fall. After any significant transverse cooling of the random emittance phase space,

this coherent angular momentum will be largely removed:

pφ r ≈ 0

Then when the beam exits the solenoid, this canonical angular momentum becomes a real

angular momentum.
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< pφ r >end ≈ −

c Bz r

2


 r

This represents an effective emittance

ε⊥(effective) = βvγσ⊥



< pφ >

p




≈ βvγ σ⊥



cBz σ⊥

2p


 = βvγ σ

2
⊥



cBz

2p




= βvγ


ε⊥ β⊥
βvγ





cBz

2p


 = (ε⊥ β⊥(beam))


cBz

2p




Since β⊥(lattice) in a solenoid is given by

β⊥(lattice) =
2p

cBz

ε⊥(effective) = (ε⊥ ζ)




2p

cBz





cBz

2p


 = (ε⊥ ζ)

where

ζ =
β⊥(beam)

β⊥(lattice)
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There are three different circumstances:

1. In a periodic lattice in which the cooling occurs in a solenoid with the β⊥(beam) = β⊥(lattice)

In this case: ζ = 1 so

ε⊥(effective) = ε⊥

Which effectively increases the final emittance in both x and y by approximatel
√

2

2. Cooling in a non-periodic long solenoid where σ⊥ does not change, while only σθ is cooled

In this case β⊥(beam) >> β⊥(lattice), ζ >> 1 and

ε⊥(effective) >> ε⊥

The effective additional emittance is much more than a factor of
√

2

3. Cooling in a slenoid within a lattice where β⊥(beam) << β⊥(lattice), ζ << 1 and

ε⊥(effective) << ε⊥

So in this case the problem is negligible
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1.7 Continuous Solenoid

Coils Outside RF: e.g. in Feasiility Study 1, FNAL 1 flip design
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This would be a case with ζ >> 1 so field reversals (flips) are required

One must design the flips to match the be-

tas from one side to the other.

For a computer designed matched flip be-

tween uniform solenoidal fields: the follow-

ing figure shows Bz vs. z and the β⊥’s vs.

z for different momenta.

alt sol B=1.25 (apr00 as1n)
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1.8 Periodic lattices

If we observe a slightly off axis tracks angle and position once for each ”cell” and plot their angles

θ and positions x then they will, if this is a stable lattice, fall on an ellipse, as in the left hand

figure below
θ

x

xmax

θmax

•
1

•2
•3

•
4

•5

•6

•7

•8

•9

•10

•11

•12

•13
•14

•15

•16

•17

•18
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•
20 θ

√
β

x/
√
β
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7

ψ

ψ

ψ

The β⊥ is then given by the ratio of the major and minor axes:

β⊥ =
xmax

θmax

If we replot the points with axes of x/
√
β⊥ and θ

√
β⊥, then the points fall on a circle.

The angle between successive cells is now found to be a constant and is the phase advance per

cell ψ The tune for the cell is

ν = ψ/2π

If the tune is an integer or half integer then we have a ”reonance” in where the parameter β⊥
often goes to zero or infinity
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Single and Double Periodicities
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1.8.1 Single periodicity

Often refered to as FOFO (focus-focus)
A
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• Resonances are introduced

• Betas are reduced locally

• But momentum acceptance is
small

• & smaller if the perturbation is
small
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1.8.2 Double Periodicity

Super FOFO

• A second resonance is introduced

• Between the two resonances there are lower betas

over a finite momentum range

• Beta lower by about 1/2 solenoid (ζ ≈ 0.5)
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Super FOFO

• Because focusing ∝ B2 there are several symme-

tries with similar lattice properties:

– < + + | + + > minimizes current but induces

angular momentum

– < + + | − − > avoids angular momentum

– < − + | − + > has all cells truely identical
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3 coil SFOFO in Study 2 & MICE < +++|−−− >2
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3 coils allows minimum β to be varied
b
et

a
(m

)

momentum (GeV/c)
0.10 0.15 0.20 0.25 0.30

0.0

0.2

0.4

0.6

• Reduce ”coupling coil” current
while raising focus coil current to
keep pass band centered

• Wide variation of betas

• Momentum acceptance falls with
beta

54



1.9 Minimum betas vs. Momentum acceptance

If we normalize the minimum betas to those of long solenoids with fields equal
to the maximum axial fields in a set of lattices

F =
β⊥
p

Bz(max) c

∆ p/p (%)

F
=

β
/β

o

0 20 40 60
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◦

◦
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◦

• For SFOFO and small ∆p : β ∝ ∆p

• For FOFO and small ∆p : β ∝
√

∆p

• For very large ∆p FOFO or long solenoids required

• But for small ∆p SFOFO is superior
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SFOFO at start of Study 2 Cooling and in MICE

• This is the lattice to be tested in Muon Ionization Cooling Experiemnt (MICE)
at RAL

• In study 2 the lattice is modified vs. length to lower β⊥ as ε falls
This keeps σθ and ε/εo more or less constant, thus maintains cooling rate
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Study 2 Performance
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• With RF and Hydrogen Windows, Co ≈ 45 10−4

• β⊥(end)=.18 m,

• βv(end)=0.85,
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2 5) LONGITUDINAL IONIZATION COOLING

Following the convention for synchrotron cooling we define partition functions:

Jx,y,z =

∆ (εx,y,z)
εx,y,z

∆p
p

(27)

J6 = Jx + Jy + Jz (28)

where the ∆ε’s are those induced directly by the energy loss mechanism (syn-
chrotron radiation for electrons, ionization energy loss in this case). ∆p refers to
the loss of momentum induced by this energy loss.

In electron synchrotrons, with no gradients fields, Jx = Jy = 1, and Jz = 2.
In muon ionization cooling, Jx = Jy = 1, but Jz is negative or small.
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2.1 c.f. Transverse

From last lecture:
ε⊥ = βvγσ⊥σθ = βvγσ⊥

σp⊥
p

∆σp⊥
σp⊥

=
∆p

p

and σ⊥ does not change, so
∆ε⊥
ε⊥

=
∆p

p
(29)

and thus
Jx = Jy = 1 (30)
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2.2 Longitudinal cooling/heating without wedges

γ

z

∆s is thickness of absorber

σγ1
γ
−∆sdγ

ds

∆s
(

−dγ
ds − σγ1

d(dγ/ds)
dγ

)

σγ2 = σγ1 − σγ1 ∆s d(dγ/ds)
dγ

i.e. ∆σγ = σγ1 ∆s d

The emittance in the longitudinal direction εz is (eq.5):

εz = γβv
σp
p

σz =
1

m
σpσz =

c

m
σEσt = c σγ σt (31)

where σt is the rms bunch length in time, and c is the velocity of light. Drifting
between interactions will not change emittance (Louville), and an interaction will
not change σt, so emittance change is only induced by the energy change in the
interactions:

∆εz
εz

=
∆σγ
σγ

=
σγ ∆s d(dγ/ds)

dγ

σγ
= ∆s

d(dγ/ds)

dγ
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and
∆p

p
=

∆γ

β2
vγ

=
∆s

β2
vγ



dγ

ds




So from the definition of the partition function Jz:

Jz =
∆εz
εz
∆p
p

=

(
∆s d(dγ/ds)

dγ

)

∆s
β2

vγ

(
dγ
ds

) =

(
β2
v
d(dγ/ds)
dγ/γ

)

(
dγ
ds

) (32)

A typical energy loss, relative to its
minimum, as a function of energy, is
shown at right (this example is for
Lithium).

Note rapid rise for E < 100 MeV

Muon Energy (MeV)

re
la

ti
v
e
(d

E
/
d
x
)

10.0 102 103

1

2

3

4

Approximately
dγ

ds
= B

1

β2
v


1

2
ln(A β4

vγ
4 − β2

v


 (33)

where

A =
(2mec

2/e)2

I2
B ≈ 0.0307

(mµc2/e)

Z

A
(34)

where Z and A are for the nucleus of the material, and I is the ionization potential for that

material.
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Differentiating the above and substitut-
ing this into equation 32, we get Jz and
J6 = Jz + 2 vs. momentum.

It is seen that Jz is strongly negative at
low energies (longitudinal heating), and
is only barely positive at momenta above
300 MeV/c. To avoid rapid longitudi-
nal heating we often cool at a moderate
momentum around 200 MeV/c, where
Jz ≈ 0, and J6 ≈ 2. Mom (MeV/c)

J
z
J
⊥
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However 6D cooling remains finite even at very low momenta
In order to cool εz we need a method to exchange cooling between the transverse

and longitudinal directions. This can be done in synchrotron cooling if focusing
and bending is combined, but in this case, and in general, one can show that such
mixing can only increase one J at the expense of the others: J6 is conserved.

∆Jx + ∆Jx + ∆Jx = 0 (35)

and for typical operating momenta (p ≈ 200 MeV/c:

Jx = Jz = 1.0 Jz ≈ − 0.3 J6 = Jx + Jy + Jz ≈ 1.7 (36)
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2.3 Emittance Exchange

• dp/p reduced But σy increased

• Long Emittance reduced Trans Emittance Increased

• ”Emittance Exchange”
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2.4 Longitudinal cooling with wedges and Dispersion

y

s

Beam
θ

`

h

Wedge

γ

z

σγ1
γ

−` dγ
ds

−` dγ
ds

− σγ1
ds
dγ

dγ
ds

σγ2 = σγ1 − σγ1
ds
dγ

dγ
ds

i.e.

∆σγ = σγ
ds
dγ

dγ
ds

∆σγ = σγ
`
h
dy
dγ

dγ
ds

For a wedge with center thickness ` and height from center h ( = `
2 tan(θ/2)), in dispersion D

D =
dy

dp/p
so with eq. 2 D = β2

v

dy

dγ/γ

dy

dγ
=

D

γβ2
v

∆εz
εz

=
∆σγ
σγ

=
σγ

ds
dγ

(
dγ
ds

)

σγ
=

ds

dγ


dγ

ds


 =


 `

h


 D

β2
v γ


dγ

ds




and
∆p

p
=

∆γ

β2
vγ

=
`

β2
vγ


dγ

ds




∆Jz(wedge) =
∆εz
εz
∆p
p

=

(
`
h

)
D
β2

v γ

(
dγ
ds

)

`
β2

vγ

(
dγ
ds

) =
D

h
(for simple bend & gas ∆Jz(wedge) = 1) (37)

Jz = Jz(no wedge) + ∆Jz(wedge) (38)

But from eq.35, for any finite Jz(wedge), Jx or Jy will change in the opposite direction.
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2.5 Longitudinal Heating Terms

Since (eq. 31 ) εz = c σγ σt , and t and thus σt is conserved in an interaction

∆εz
εz

=
∆σγ
σγ

Straggling, from Perkins text book ***, converted to MKS:

∆(σγ) =
∆σ2

γ

2σγ
≈ 1

2σγ
0.06

Z

A



me

mµ




2

γ2


1 −

β2
v

2


 ρ ∆s

From eq. 2 : ∆E = Eβ2
v

∆p

p
, so : ∆s =

∆E

dE/ds
=

1

dE/ds
E β2

v

∆p

p
so

∆εz
εz

=
0.06

2σ2
γ

Z

A



me

mµ




2

γ2


1 −

β2
v

2


 ρ

β2
v E

dE/ds

∆p

p

This can be compared with the cooling term
∆εz
εz

= − Jz
dp

p
giving an equilibrium:

σp
p

=






me

mµ




√√√√√√√
0.06 Z ρ

2 A (dγ/ds)




√√√√√√√
γ

β2
v


1 −

β2
v

2




1

Jz
(39)

For Hydrogen, the value of the first parenthesis is ≈1.36 %.
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.

Without coupling, Jz is small or
negative, and the equilibrium does
not exist. But with wedges to gen-
erate deltaJzs to give equal parti-
tion functions (see plot), then, since
J6 remains positive at all momenta,
Jz = J6/3 will also remain positive,
and there will be equilibrium longi-
tudinal emittances plotted here.
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It is seen to favor cooling at around 200 MeV/c, but has a broad minimum.
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2.5.1 rf and bunch length

Above we have determined the equilibrium σp/p, but to obtain the Longitudinal
emittance εz = βvγσp/pσz we need σz.

If the rf acceleration is relatively uniform along the lattice, then the synchrotron
wavelength1 :

λs =

√√√√√√√
2πβ2

vλrfγ mµ)

−Erfη cos(φ)
(40)

where Erf is the rf accelerating field, φ is the rf phase, ( φ = 0 has zero
acceleration) and η is the frequency slip factor

η = −
dvz
vz
dp
p

= α − 1

γ2
(41)

For a linear lattice the momentum compaction α = 0 and

λs =

√√√√√√√
2πβ2

vλ
3
rfγ mµ)

Erf cos(φ)

The bunch length, given the relative momentum spread dp/p = δ, is given by2:

σz = δ βv
−η λs

2π
= δ β2

v

√√√√√√√
−ηλrf mµγ

2π E cos(φ)
(42)

1e.g. S.Y. Lee ”Accelerator Physics”, eq 3.27
2e.g. S.Y. Lee ”Accelerator Physics”, eq 3.55
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which for a linear lattice gives

σz = δ β2
v

√√√√√√√
λrf mµ

2π E cos(φ) γ
(43)

This is only weakly dependent on the en-
ergy.
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The longitudinal emittance

εz = βvγ
σp
p

σz

is seen to be rather flat below 200
MeV/c, but rises linearly with momen-
tum above, thus favoring a momentum
around 200 MeV/c

The equilibrium longitudinal emittance
could be reduced if (−η) could be de-
creased, e.g. by having a suitable posi-
tive momentum compaction α. In princi-
ple (−η), and thus σz and εz(min) could
be reduced to arbitrarily small values as
the lattice approaches its ”transition en-
ergy”. A simple bend, or a helical lattice,
would do this, but a linear wiggler would
have a negative α and make things worse
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We see that the equilibrium longitudinal emittance

εz ∝ σz ∝
√√√√√√
λrf

E
In general the maximum accelerating gradient limiting E is ∝ 1/

√
λrf so

εz ∝ γ3/4

We have plotted this minimum for 200 MeV/c
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2.6 Example 1) In Gas with Helical Field

(Derbenev, Rol Johnson, Muons Inc.) 3

• Hydrogen gas filled

• Higher momenta have longer paths gives cool-
ing in 6 dimensions

• Moderate fields at beam
Bz=3.5 T. Br=.5 T

• But very high fields if outside rf

• Problem of integrating rf not yet solved

3MUC 185 and 284
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2.7 Example 2) RFOFO Ring

R.B. Palmer R. Fernow J. Gallardo4, and Balbekov5

(

33 m Circumference

200 MeV/c

Injection/Extraction

Vertical Kicker

200 MHz rf 12 MV/m

Alternating Solenoids
Tilted for Bending By

Hydrogen Absorbers

4Fernow and others: MUC-232, 265, 268, & 273
5V.Balbekov ”Simulation of RFOFO Ring Cooler with Tilted Solenoids” MUC-CONF–0264
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• Coils tilted to generate 0.125 T average bending

• SFOFO would have new resonances because periodicity 5.5 m vs. 2.75 m

• RFOFO cells all the same so new resonances avoided

Tilted Solenoids
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Performance
Using Real Fields, but no windows or injection insertion

Merit =
n

no

ε6,o

ε6
=

Initial phase density

final phase density

n
/n

o
(%

)
ε ⊥

(π
m
m

)
ε ‖

(π
m
m

)
ε 6

(π
cm

3
)

turns
0 5 10 15 20

10−2

0.1

1.0

10.0

102

n/no 0.36

ε ⊥ 12.1 to 2.17 1/5.6
ε ‖ 41.1 to 2.4 1/17

ε6 6.4 to 0.012 1/533

emit1/emit2 × transmission = 188

final rms dp/p ≈ 3.5 %
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5) Space Charge Effects
From S Y Lee (p109),for a uniform charge density, where ε⊥ is the normalized

transverse emittance:
∆νflat

L
=




Nµ√
2π σz




rµ
2π ε⊥ βvγ2

For a Gaussian distribution:

∆νGausian

L
=




Nµ

2
√

2π σz




rµ
2π ε⊥ βvγ2

This is true INDEPENDENT of β⊥

For convenience I define

β⊥ ave =



Lcell

2π νcell




Then:

∆νGaussian

νcell
=



Nµ

ε⊥




β⊥ ave rµ
2
√

2πσz βvγ2

where rµ = 1.35 10−17 (mm),
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Examples
Rµ = 1.35 10−17 (m)

Note that Nµ is larger at earlier cooling stages to allow for losses

case Nµ < β⊥ > σz ε⊥ p ∆ν/ν
1012 m m mm mrad MeV/c

Last 50 T cooling 2.8 0.3 4 25 50 0.05
Last RFOFO Guggenheim 4 0.19 0.025 400 200 0.11
First RFOFO Guggenheim after merge 6 0.6 0.02 2000 200 0.12

• Negligible problem in the 50 T solenoids
They operate in the first pass band & can tolerate large ∆ν/ν

• Finite effect in Guggenheim RFOFO lattices
The accepted ∆ν/ν between the resonaces at ν = .5 and ν = 1.0

∆ν(accepted)

ν
≈

0.5

0.75
≈ 0.67

so tune spreads of 0.11 & 0.12 will somewhat reduce momentum acceptance
This needs to be included in simulations
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3 TUTORIALS

1. Depth of Focus

If a depth of focus is defined as that distance from a focus where the spot
size has increased by

√
2 then what is this depth in terms of β⊥ and/or ε⊥?
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2. Solenoid focus

Assuming the axis of symmetry is z

(a) Sketch the xy view of a track starting on axis and then entering a long
solenoid

(b) Sketch the xy view of a track starting on axis, then passing through a
thinnish solenoid

(c) Sketch the xy view of a track starting on axis then passing through two
thinnish solenoids with opposite fields, with the second having a somewhat
lower field than the first
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(d) If in a long solenoid a paraxial particle makes two helix turns in a length
λo (= 4π p/Bc), what is λθ for θ = 45o, and approximately for θ = 0.3 ?

(e) What is the fractional momentum changes that would generate the same
changes in focusing ?
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3. Transverse cooling in a continuous solenoid

(a) What is the β⊥ for Bz = 10 T and p = 200 MeV/c ?

(b) What is the approximate equilibrium emittance ?

(c) And for B = 50 T and muons of kinetic energy E = 10 MeV

4. Transverse cooling in a Lithium Lens

(a) What is the β⊥ in a current carrying rod Bmax=10 T, p=176 MeV/c and
radius=2.35 cm?

(b) What is the current

(c) What is the equilibrium emittance and rms beam size ?
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5. Study 2 performance

length (m)

e
m

it
p
e
rp

(m
m

)

400 450 500
0

5

10

15

2.2

12

mom=200 MeV/c

final emittance = 2.2 π mm radians

final β⊥=18 cm

With RF and Hydrogen Windows, Co ≈ 45 10−4

(a) What is equilibrium emittance

(b) What is final rate of cooling

rate =
dε⊥/ε⊥
dp/p
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6. Choice of cooling energy
Without scattering, the rate of cooling strongly favors low energy to minimize
the amount of rf needed to re accelerate (eq. 18:

dε

ε
=

dp

p
=

dE

E

1

β2
v

But if total acceleration were not important, e.g. if the cooling is done in a
ring, then there is another criterion: The cooling per fractional loss of particles
by decay:

(a) Calculate the rate of cooling vs particle loss:

Q =
dε/ε

dn/n

(b) How does it depend on the cooling momentum

(c) Would the criterion change if we were interested in rate of 6 dimensional
cooling
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7. RFOFO performance

Assuming

D = 7 cm, ` = 28.6 cm,

Wedge opening angle 110 degrees

Momentum 200 MeV/c where Jz ≈ −0.3, and for hydrogen Co = 38 10−4

β⊥= 40 cm

(a) what is ∆Jz
(b) what are Jx = Jy and Jz

(c) what is the calculated equilibrium transverse emittance

(d) what is the calculated rms dp/p

(e) compare with simulated performance
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8. Space charge tune shift

(a) express the space charge tune shift ∆ν/ν as a function of (Nν/ε⊥), ε‖ and
dp/p

(b) Assuming a beam beam tune shift limited collider ring, is the space charge
tune shift problem during cooling reduced if, we use more bunches with
smaller numbers of muons per bunch (Nν) ?

(c) Are there other reasons one prefers fewer muons per bunch ?

(d) Again assuming a beam beam tune shift limited collider ring, is the space
charge tune shift problem during cooling reduced if we cool more bunches
with smaller numbers of muons per bunch (Nν) and recombine them after
cooling, before injecting them into the collider ring ?

(e) What can one do to minimize the space charge tune shift problem while
attempting to reach the smallest possible ε6 = εxεyεz ?
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