

MAP Overview

Steve Geer
Accelerator Physics Center
Fermi National Accelerator
Laboratory

Muon Accelerator Program Review Fermilab, August 24, 2010

TALKS IN SESSIONS 1 & 2

- THIS TALK: Overview
- Motivation & Organization
- Achievements & Challenges
- Goals & Resources
- Physics Motivation: Eichten
- More detailed R&D Plans & Resources

- Design & Simulation: Fernow

- Technology Development: Bross

- System Tests: Kaplan

• Management Plan: Zisman

INTRODUCTION

- Over the last decade there has been significant progress in developing the concepts & technologies required to create $O(10^{21})$ muons/year & cool them to fit within an accelerator.
- This enabling R&D opens the way for:
 - NEUTRINO FACTORIES:
 muons decay in the straight
 section of a storage ring →
 v beam with unique properties
 for precision oscillation
 measurements.
 - MUON COLLIDERS: μ^+ & μ^- collide in a storage ring to produce lepton-antilepton collisions up to multi-TeV energies.

MOTIVATION - COST

- Physics motivation for v Factories & Muon Colliders
 see Estia's talk
- There is also a potential cost-effectiveness motivation for a Multi-TeV Muon Collider which arises because muons don't radiate as readily as electrons (m_u / m_e ~ 207):
- COMPACTFits on laboratory site
- MULTI-PASS ACCELERATION
 Cost effective construction &
 operation
- MULTIPASS COLLISIONS IN A RING (~1000 turns) Relaxed emittance requirements (& hence relaxed tolerances) c.f. single pass machines

CHALLENGES

- Muons are produced as tertiary particles. To make enough of them we must start with a MW scale proton source & target facility.
- Muons decay ⇒ everything must be done fast and we must deal with the decay electrons (& neutrinos for CM energies above ~3 TeV).
- Muons are born within a large 6D phase-space. For a MC we must cool them by O(10⁶) before they decay ⇒ New cooling technique (ionization cooling) must be demonstrated, and it requires components with demanding performance (NCRF in magnetic channel, high field solenoids.)
- After cooling, beams still have relatively large emittance.

MUON COLLIDER SCHEMATIC

Proton source: Upgraded PROJECT X (~4 MW, 2±1 ns long bunches)

10²¹ muons per year that fit within the acceptance of an accelerator

 $\int s = 1.5 \text{ TeV}$ Circumference = 2.75 km $L = 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ μ /bunch = 2x10¹² $\sigma(p)/p = 0.1\%$ $\varepsilon_{\rm IN}$ = 25 μ m $\beta^* = 1$ cm

Muon Collider cf. Neutrino Factory

In present MC baseline design, Front End is same as for NF

NFMCC & MCTF

- Muon Collider (MC) & Neutrino Factory (NF) R&D has been pursued in the U.S. by:
 - Neutrino Factory & Muon Collider Collaboration (NFMCC) since 1996
 - Fermilab Muon Collider Task Force (MCTF) since 2006
- The NFMCC & MCTF R&D programs have been coordinated by a committee comprising the NFMCC+MCTF leadership
- NF R&D is international, & is pursued within the context of the International Design Study for a Neutrino Factory (IDS-NF), which aspires to deliver a Reference Design Report by ~2013.
- Our international projects include 2 "systems tests":
 - MERIT: mercury-jet target experiment (complete)
 - MICE: ionization cooling experiment (ongoing)

ACCOMPLISHMENTS

- Successful completion of NF feasibility studies 1, 2, 2a, & International Scoping Study; launching of the ongoing International Design Study for a NF (IDS-NF)
 - Solid basis for planning the MC Design Feasibility Study (DFS)
- Development of ionization cooling simulation tools and a 6D cooling channel concept.
- Successful completion of MERIT, full engagement in MICE, & establishment of the MuCool Test Area (MTA) facility.
- Establishment of an ongoing technology development program (RF studies, magnet studies, ...)
 - Identified issue of RF breakdown in magnetic field

THE MAP INITIATIVE

• Oct 1, 2009 letter from DOE Assoc. Director of Science for HEP to FNAL Director:

"Our office believes that it is timely to mount a concerted national R&D program that addresses the technical challenges and feasibility issues relevant to the capabilities needed for future Neutrino Factory and multi-TeV Muon Collider facilities. ..."

- Letter requested that FNAL Director put in place a new organization for a national Muon Collider & Neutrino Factory R&D program, hosted at FNAL, and designate the program director.
- MAP Organization is now in place and is functioning.
- 214 MAP participants at birth (~31 FTE) from 14 institutions:
 –ANL, BNL, FNAL, Jlab, LBNL, ORNL, SLAC, Cornell, IIT, Princeton, UCB, UCLA, UCR, U-Miss
- MAP R&D proposal submitted by FNAL Director on March 1st
- MAP Website: http://map.fnal.gov

MAP ORGANIZATION

See M. Zisman's talk on the Management Plan

ORGANIZATION: L1 & L2

Organization populated down to L2, and is functioning

MAP GOALS

- MC: To significantly advance the R&D from its present level (exploring technical concepts) to the next level (establishing feasibility by performing endto-end simulations based upon hardware that is inhand or under development).
- NF: To complete MICE*), and make those significant U.S. contributions to the IDS-NF that are needed to ensure success (delivering an RDR by ~2013).

*) Also important for MC

PROPOSAL STRATEGY

- Identify the required R&D deliverables.
- Make an R&D plan that respects initial funding guidelines and achieves the deliverables.
- Make an augmented plan that speeds things up by 1 year (i.e. assess how much it costs to go faster).
 - Important if future developments (e.g. LHC results)
 motivate speeding things up
- In both nominal and augmented plans, Year 1 = now (FY10) with the current funding level.
 - The MAP organization is presently executing Year 1 of the MAP plan

MILESTONES & DELIVERABLES

- Muon Collider Design Feasibility Report (FY16)
 - Based on end-to-end simulation of MC complex which uses components that are in-hand or can be developed with a specified R&D program
- Hardware R&D results → technology choice
- MC Cost range (FY16)
- Contributions to the IDS-NF RDR (FY14)
- R&D plan for longer-term activities (including 6D cooling experiment)

Deliverable	Nominal schedule	Augmented schedule	
MC DFS			
Interim	FY14		
Final + cost range	FY16	FY15	
MICE hardware completion	FY13		
RF studies (down-select)	FY12		
IDS-NF RDR	FY14		
6D cooling definition	FY12		
6D cooling section component bench test	FY16	FY15	
6D demonstration proposal	FY16	FY15	

R&D PROGRESS TOWARDS THE PROPOSED MC-DFS

NASA Technology Readiness Levels

ORGANIZATION/FUNDING EVOLUTION

COMPLEMENTARY EFFORTS

- International partners (see talk by Blondel)
 - MICE
 - IDS-NF
- Activities funded by NSF
 - Contributions to MICE
 - Proposed low frequency SCRF R&D (Cornell).
- DOE support for VHFSMC R&D on HTS conductor
- DOE supported SBIR funded activities. Examples:
 - 40T solenoid (PBL)
 - G4BEAMLINE (Muons Inc.)

DOE FUNDING REQUEST

- Requested funding profile respects an initial guideline of ~15 M\$/yr (FY10 dollars)
- More details in L1 talks

С	V	4	1	
Г	I		ı	U

	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Effort (FTE)	31	40	44	48	47	49	47
SWF (\$M) ^{a)}	8.3	11.2	12.2	13.2	12.9	13.0	13.4
$M&S ($M)^{a)}$	2.0	4.2	3.3	2.3	2.6	2.5	1.5
Total (\$M)a)	10.3	15.4	15.5	15.5	15.5	15.5	14.9
Total (\$M)b)	10.3	16.1	16.9	17.5	18.2	19.0	19.0

a) FY10 dollars.

b) Then-year dollars, assuming 4% annual escalation.

EFFORT

More details in L1 talks

 Proposed effort levels agreed on with BNL, FNAL & LBNL management

FY10

	Y1	Y2	Y3	Y4	Y5	Y6	Y7
BNL	5	7	8	8	8	8	6
FNAL	20	23	25	28	31	33	30
LBNL	3	4	5	5	4	3	5
Other ^{a)}	3	6	6	7	4	5	6
TOTAL	31	40	44	48	47	49	47

a) Includes SBIR companies, universities, other laboratories, additional engineering from the main laboratories and/or external vendor contracts.

AUGMENTED PLAN

What it takes to speed up by 1 year

	Y1	Y2	Y3	Y4	Y5	Y6
Effort (FTE)	31	40	51	58	61	64
SWF (\$M) ^{a)}	8.3	11.2	14.4	16.0	16.2	17.4
$M&S ($M)^{a}$	2.0	4.2	3.5	3.2	3.3	2.0
Total (\$M) ^{a)}	10.3	15.4	17.9	19.2	19.5	19.4
Total (\$M) ^{b)}	10.3	16.1	19.5	21.7	22.9	23.7

	Y1	Y2	Y3	Y4	Y5	Y6
	(FTE)	(FTE)	(FTE)	(FTE)	(FTE)	(FTE)
BNL	5	7	8	9	9	10
FNAL	20	23	30	34	37	37
LBNL	3	4	5	6	6	6
Other ^{a)}	3	6	8	9	9	11
TOTAL	31	40	51	58	61	64

RELATIONSHIP WITH PHYSICS STUDIES

- Physics & detector background studies are outside the scope of MAP but ...
 - Within MAP we have a machine-detector interface group that optimizes final focus & shielding, and provides background files for physics studies
 - We are actively engaged in helping to set up and drive forward a parallel physics-detector study effort.
 - See talk by Estia
 - Leader for physics/backgrounds studies will participate in the "MAP Management Council" which provides week-byweek advice to the MAP Director(s)
 - The physics/background studies will deliver a report to community on detector design & physics capabilities.

DETECTOR SHIELDING PROGRESS

 Illustrative example: MARS map of background neutrons for a 1.5 TeV Muon Collider

Meutron peak/yr = $0.1xLHC@10^{34}$

Total absorbed dose from all background particles in Si detector

Peak at r=4 cm:

MC: 0.1 MGy/yr

LHC: 0.2 MGy/yr @10³⁴

FINAL REMARKS

- The proposed MAP R&D plan is built upon the experience and success from the last decade.
- The proposed plan interfaces seamlessly with the ongoing R&D (Year 1 = FY10), and the MAP organization is in place and functioning.
- The plan would deliver a NF-RDR by ~2013, and by ~2016 advance MC R&D from early component R&D to sub-system bench tests, MICE completion, an end-toend simulation of a MC complex, and a MC feasibility assessment and cost range.
- The R&D is challenging, and we will have to adjust the plan along the way, but we believe that with appropriate support we will succeed.

A MUON-BASED VISION

