

MICE Overview, Status, and Facility

Linda R. Coney Department of Physics and Astronomy University of California, Riverside

Muon Accelerator Program Review Fermilab, August 24, 2010

UC RIVERSIDE

Outline

- Motivation
- MICE Schedule
- MICE Description
- Step I Results

- Cooling Channel Status
- Conclusions

NF & MC R&D

• Challenges:

- High intensity proton source
- Complex target
- Want to accelerate muon beam
 - From decay of pions
 - Large phase space

 → ie. High emittance
 → need to cool (shrink) beam
- What do we need?
 - MICEProof of ionization cooling
 - Detector designs
 - Target studies (MERIT)
 - RF in magnetic field studies (MUCOOL)

Muon Collider

UCRIVERSIDE MICE: Muon Ionization Cooling Experiment

- <u>MICE:</u>
 - Design, build, commission and operate a realistic section of cooling channel
 - Measure its performance in a variety of modes of operation and beam conditions ...

... results will be used to optimize Neutrino Factory & Muon Collider designs

MICE: Design

- MICE designed to produce a 10% cooling effect on the lacksquaremuon beam
- Uses particle detectors to measure cooling effect to ~1%
- Measurements will be done with muon beams having momentum of 140 MeV/c – 240 MeV/c
- Method:
 - Create beam of muons
 - Identify muons and reject background
 - Measure single particle parameters x, p_x, y, p_y, p_z
 Cool muons in absorber

 - Restore longitudinal momentum component with RF cavities
 - Identify outgoing particles to reject electrons from muon decay

MICE: MAP Involvement

MAP institutions contributing to all aspects of MICE

MAP Review - MICE Overview - L. Coney

UC RIVERSIDE

MICE Schedule

• Proceeding in stages

MAP Review - MICE Overview - L. Coney

August 24-26, 2010

MICE Beam Line

MAP Review - MICE Overview - L. Coney

UCRIVERSITE OF CALIFORNIA

MICE Beam Line

- ISIS 800 MeV proton synchrotron at RAL
- Titanium target
- Quad Triplet
 - Captures pions
- First Dipole
 - Selects pion momentum

 Two Quad Triplets follow for transport

Description: Particle Identification Detectors

- Downstream PID: reject decay electrons
 - Time of Flight TOF2 (Italy/Bulgaria)
 - Kloe-Light Calorimeter KL (Italy)
 - Electron-Muon Ranger EMR (UGeneva)

- Upstream PID: discriminate p, π, μ
 - discriminate p, π, μ – Beam Profile Monitors (FNAL) – Threshold Cerenkov
 - Threshold Cerenkov (UMiss/Belgium)
 - Time of Flight TOF0 & TOF1 (Italy/Bulgaria)

Status: Target

- MICE target installed in ISIS August 2009 (UK)
 - Run at base rate & 50 Hz (Normal User Run)
- Target is working beautifully
- Target stability checked every 10,000 pulses
 - Process to monitor target behavior agreed upon with ISIS
 - Target timing monitored
- Target Operation:

- 570,000 pulses to date in ISIS
- Offline target ran 2.15 M actuations
- Need online & offline working targets
 - T3 under construction
 - Two target system fall 2010

Status: Beam Line

- **Conventional Magnets**

 - All operational and working well
 Current reliably stable during User Run
- Decay Solenoid (PSI/RAL)
 - 5 T superconducting solenoid magnet
 Increases downstream particle flux by
 - factor of ~5

Decay Solenoid cold, stable, and operational for entire User Run June – August 2010

- Proton Absorber installed downstream of Decay Solenoid
 - 15, 29, 49, 54mm
 - Successfully eliminated proton contamination in positive μ beams

Step I: Running

Goals

- Commission and calibrate beam line detectors
 - Luminosity Monitor
 - TOF0, TOF1, TOF2, CKOVs, KL
 - FNAL beam profile monitors
- Commission beam line magnets
- Take data for each point in ε -p matrix
 - MICE beam designed to be tunable
 - Understand beam parameters for each configuration
- Compare data to simulation of beam line
- Prepare for Steps with cooling
- Method
 - Dedicated data-taking run from June 22 August 12
 - Special Machine Physics study periods

Step I: Luminosity Monitor Commissioning

- Determines particle rate close to target
- Extract protons on target as function of depth independent of beam loss monitors. Installed in the ISIS vault & commissioned (Glasgow)
 - Coincidence between 4 scintillators with plastic filter to reduce low energy protons
 - Data scales well with beam loss

Working well with info available online during running

Step I:

TOF Detector Commissioning

OF Profile

Mean x 4.518 Mean v 4 642 Beam profile at TOF0

- TOF0, TOF1, TOF2 are in beam line
- Two planes of 1 inch orthogonal scintillator slabs in x and y Timing information & beam profile data

 - 2D grid provides spatial information

UCRIVERSIDE Step I: TOF Detector Commissioning

- TOF0 51ps
- TOF1 62ps
- TOF2 52ps
 Resolution meets design
 - goals for TOFs

rogram

UCRIVERSIDE Step I Running: Data Summary

- Record amount of data taken this summer
 - Over 335,000 dips of target into ISIS
 - Over 13,000,000 particle triggers
- Emittance-momentum matrix scan
- Beam line studies:
 - Quad scans
 - Dipole scans
 - DŠ scan
 - Neutrals
- Online tuning of beam with online reconstruction using beam optics parameters
- Reference run each day - 400 pulses 6-200 (ε-p)
- Target test run each day
- All hardware found to be stable

Step I Goal: Fill in ε-p matrix data

Step I: Beam Studies

Spill Gate (counts

Counts During 0.5ms

1400

1200

1000

 π^- beam

- Particle Rate vs Losses
 - Goal of ~500 muons/spill
 - Systematically study particle rates in MICE vs ISIS beam loss
 - Initially used pion optics (plot to right)
 recently μ beam
 - Linear relationship over beam loss range of ~500 mV 4700 mV
 Up to 10 V running!
- Target operation studies
- Proton absorber
 - Time-of-flight between GVA1 & TOF0
 - See protons and pions
 - Dashed lines → cuts used for PID
 - Determined absorber setting for each beam line in ε-p matrix
 - Proton absorber works

Detector Rates Vs Sector 7 Integral Beam Loss for runs 1231 - 1236

Black = GVA Red = BPM1

Pink = BPM2 Green = TOF(Blue = TOF1

- First emittance measurement using TOF detectors
 - Good muons selected using timing information

Use TOF0 & TOF1 as (x,y) stations

- Initial path length assumed given beam line _ transfer matrix
- Each particle tracked through Q789
- Momentum estimated
- Infer x', y' \rightarrow (x,x') (y,y')
- Phase space paramétérs calculated Iterated until true position/momentum known _ for each muon
- Compared to MC reasonable agreement

- Analyzing recent data
- Quad scan (Q789) with 6-200 data Q789 current at -20% of nominal

UC RIVERSIDE

Step I: Results

• Goals

- Luminosity Monitor
- TOF0, TOF1, TOF2, CKOVs, KL
- FNAL beam profile monitors
- Commission beam line magnets
- \checkmark Take data for each point in ε -p matrix
 - MICE beam designed to be tuneable
 - Understand beam parameters for each configuration
- Compare data to simulation of beam line
- Prepare for Steps with cooling
- Muon Beams Produced Routinely
 - Run at high beam losses (2-3V)
 - Produces ~50 μ^+ /~8 μ^- per target dip (every ~3 sec)
 - Reached a maximum of 10V losses recently

Status: Cooling Channel Components

- Steps II/III, and beyond, require spectrometers for precise emittance measurements
- Tracker (US, UK, Japan)

- Both trackers ready and tested with cosmic rays
- Resolution, Light Yield & Efficiency all exceed design goals
- NIM paper submission In progress
- Spectrometer Solenoids (US)
 - Trackers sit inside solenoids
 - 4 T superconducting
 - 5 coils: 1 main tracker coil
 - 2 end coils, 2 matching coils
 - See talk by S. Virostek

UCRIVERSIDE Description: Absorber - AFC

- Absorber-Focusing Coil AFC
 - LH₂ absorbers inside Absorber-Focus-Coil (AFC) module with superconducting coils to provide strong focus for muon cooling
 2 modulos by Stop VI
 - 3 modules by Step VI
- LH2 Absorber (KEK)
 - 20.7 liters LH2
 - LiH absorber will also be tested
 - 35 cm long on beam axis
 - 15 cm radius
- Focusing Coils (UK)
 2 coils
 - 26.3 cm inner radius
 - 4 T in solenoid mode

Status: **Cooling Channel Components**

- Step IV requires absorber for first cooling measurements
- Absorber 1 tested at KEK Interface with Absorber Focus Coil
- First LH₂ absorber to RAL end 2010
- Second LH₂ absorber being made in Tsukuba Cooling test to follow
- Absorber Focus Coils

 - Construction in UK beginning
 Test program under development
 First magnet to RAL Jan 2011 second in May
- Solid absorbers

- LiH disk in production
 LiH wedges in production (2 x 45°)
 Test emittance exchange See talk by P. Snopok

STEP IV

Status: **Cooling Channel Components**

- Step V requires RFCC module for replenishing longitudinal component of momentum
- **RF** Cavities

- Provides magnetic field to guide muons through cooling cell
- Restore longitudinal momentum after absorbers
- Production and measurement proceeding well
 - See talk by D. Li
- **RF Coupling Coils**
 - Fabrication in progress
 See talk by S. Virostek
- First RFCC module at RAL Oct 2012

MICE: Preparation for Next **Steps**

- Infrastructure projects have been reordered to take into account delay in spectrometer solenoids
 - Advance work on LH2 infrastructure
 - Vent system, Civil engineering, Pipe/valve & gas panel work
 - Control & safety engineering
 - **RF power work (UK, UMiss NSF)**
 - Design of waveguide/power/cooling infrastructure, placement of amplifiers
 - Waveguide infrastructure
 - Specification and procurement of hardware

 - *RF amplifiers (LBNL, CERN)* 2 being reconditioned at Daresbury one complete second waiting
 Very large (4m tall, 1 ton) and must fit four in confined space in MICE Hall

UC RIVERSIDE

MICE: Conclusions

- Muons routinely observed at MICE
- Beam line and associated detectors fully operational
- Step I data-taking complete!
- Data analysis under way

- Absorber and RF cavities near delivery
- Infrastructure complete for Step II, III
- Spectrometer solenoid plan for completion in place
- Infrastructure projects reordered preparing for cooling steps
- Focusing coil fabrication in progress
- Coupling coil fabrication in progress

August 24-26, 2010

Optimal results with:

- Low Z, large X₀ material
- Tightly focused beam
- H₂ most promising absorber material
- Simple premise; however, the reality is not simple ⇒ need a test

- *Ionization cooling is the only good option:*
 - Muon lifetime is short ~2 μ s
 - Cannot use stochastic cooling slow, iterative process
 - Here muons pass through absorber material followed by RF *cavities*

MICE Motivation

- Lose transverse and longitudinal momentum in absorber
- Restore longitudinal with RF →reduction in transverse emittance
- Competition between cooling (dE/dx) and heating (multiple scattering)

MAP Review - MICE Overview - L. Coney

UCRIVERSIDE

MICE Overview

- Beam line create tuneable beam of muons
- Particle ID tag and time muons (TOF) and measure E,P (EMR)
- Spectrométers méasure muon x,y,x',y' and P_z for each particle
- Absorber LH2 or LiH cooling
- <u>RF reestablish longitudinal p_z</u>

MICE Description

 Located at the ISIS 800 MeV proton synchrotron at Rutherford Appleton Laboratory

Description: Trackers & Diffuser

- Trackers before/after cooling channel (UK, US, Japan)
 - Inside 4 T solenoid magnet (US)

 - Measures x, x', y, y', P_z 5 stations/tracker, 3 planes/station (U/V/W) 350 μ m scintillating fiber doublet layers

Performance: Design Goals Met

- Light yield goal of 10 PE → measured 11.2 & 10.7 PE
- Measured track residual 650 μm with 470 μm point resolution
- *Efficiency 99.8% and 99.6% (<0.2% dead ch)*

- Diffuser (Oxford)
 - Enable study of cooling over a range of emittance
 - Integral part of Step II & beyond
 - At upstream end of tracker 1
 - 4 stacked variable thickness disks
 - New camera iris design

Description: RF - RFCC

- *RF* Coupling Coil *RFCC*
 - Provides magnetic field to guide muons through cooling cell Restore longitudinal momentum
 - _ after absorbers
- RF Cavities (LBNL) (See talk by D. Li) 4 cavities/module

 - Normal conducting 201.25 MHz
 - 8 MV/m

- **Curved Be windows (UMiss NSF)**
- Coupling Coil (China/LBNL)
 - Single coil
 - 7.8 Ť (See talk by S. Virostek)
 - Cooled by cryocoolers
- **RF** power

 - ~1MW in 1ms pulse at 1HZ/cavity
 4 sets of amplifiers (LBNL,CERN) being refurbished at Daresbury Lab (UK. UMiss – NSF)

Status: Target Monitoring

- Target stability checked every 10,000 pulses
 - Study Beam Center Distance (BCD) to monitor target stability
- Clear difference between BCD • distribution for functioning target and failing target
 - Failing target has much broader spread T2 distribution 3-4 times as broad

Program

Status: Target Studies

- Target Operation Studies:
 - Search for ideal timing with respect to ISIS cycle
 - Also a function of target depth
 - ISIS Beam loss vs particle rate study
 - Increase target depth, producing ISIS beam loss of 0.1, 0.5, 1, 2, 3, 4, 5, 6, 8, 10 V
 - In 2008, maximum ISIS beam loss 50 mV
 - Found edge of beam at injection → need to avoid injection of next pulse
 - Study different accelerations
- ISIS machine study: beam bump at MICE target

Target operating at 2V beamloss

UCRIVERSIDE Step I: TOF Detector Commissioning

Time-of-flight distributions for different beam line configurations

•TOF Monitor – y, x, combined distributions for TOFs

- TOF0 (top); TOF1 (middle); TOF2 (bottom)
- \bullet Online reconstructed μ beam data

UCRIVERSITY OF CALIFORNIA

Step I: KL Detector Commissioning

- KL lead/scintillating fiber calorimeter module
 - Calibration in progress
 - Electrons:
 - 240 MeV/c at target → 50% release energy in KL tag counter
 - 360 MeV/c at target → 80% release energy in KL tag counter
 - Muons with 220 MeV/c at target reach EMR
 - Muons with 170 MeV/c at target will die in KL (< 80 MeV/c at KL)

MAP Review - MICE Overview - L. Coney

UC RIVERSITY OF CALIFORNIA

Step I Running: ε-p Matrix Scan

- Several different optics
- M0 and M1 correspond to different ways to obtain the right distribution in phase-space after the diffuser according to G4Beamline
- Main Goal: Comparison Data/Simulation

	140 MeV/c	200 MeV/c	240 MeV/c
3 mm rad	MO	MO	MO
6 mm rad	M0 & M1	M0 & M1	M0 & M1
10 mm rad	M0 & M1	M0 & M1	M0 & M1

	140		200		240			
	M0	M1	MO	M1	MO	M1		
3	39,434		57,763		57,361			
6	52,440	45,284	61,652	50,522	39,417	45,942		
10	42,490	53,006	50,446	27,814	43,870	45,212		

Negative polarity

Tables show number of triggers recorded in TOF1 for each beam line configuration in the ε-p matrix during July User Run

Positive polarity								
	140		200		240			
	M0	M1	MO	M1	M0	M1		
3	80,160		171,600		236,630			
6	104,040	103,042	302,897	225,200	120,911	77,177		
10	85,090	98,460	120,000	80,000	105,172	68,576		

Desitive melonity

Step I Running: Beam Line Studies

- Beam line studies:
 - Neutrals
 - Observe neutrals causing trigger in TOF1
 - Even with all magnets off
 - Only when dip target and beam stop lowered scales with beam loss
 - **Dipole scans**
 - D2 kept constant selects same momentum as for negatives without proton absorber
 - Proton absorber does not affect trigger rate
 - Quad scans
 - Check beam line alignment We observe offset in Y in TOF1

 - Being investigated
 - Characterize effect of each magnet
 - DS scan
 - **Online Optimization**
 - Muon PID w/TOFs
 - Momentum
 - Phase space plots

Neutrals in MICE

Step I Running: Online Reconstruction

Phase Space Plots ulletUsing TOFs (x, P_x) (y, P_y) - TOF0 (top plots) - TOF1 (bottom plots)

UCRIVERSITY OF CALIFORNIA

• Muon beam particle rate v losses

- Analyzing recent data Quad scan (Q789) with 6-200 data Q789 -30%

- Analyzing recent data Quad scan (Q789) with 6-200 data Q789 -20%

Analyzing recent data Quad scan (Q789) with 6-200 data – Q789 -10% hyPPhase Entries 5009 Entries 5009 **50** ; **50** p -1.076 Mean y -1.442 Mean y Mean v 0.2644 Mean y -0.1509 40 40 RMS x 57.44 RMS x 67.73 0 RMS y 7.363 RMS y 4.024 30 30 = 140 80 20 🗄 20 120 MC 10 E 10 100 60 0 0 80 -10 -10E 40 60 -20 -20 40 -30Ē -30 20 20 -40 -40 -5000 -50 00 -150 200 200 -100 -50 50 100 150 -150 -100 -50 50 100 150 Iorizontal phase space Vertical phase space Mean x27.89 ± 2.189 Mean x 17.11 ± 2.495 p_x (MeV/c) 3 50 50 ____ (MeV/c) 40 40Mean v.0.043 ± 0.452 Mean v 1.169 ± 0.19 2 30 30 D, 2020RMS x 65.98± 1.548 RMS x 73.72 ± 1.764 10 10Data RMS y13.62 ± 0.1196 RMS y5.615±0.1344 0 0 -10 -102 -20 -20 -30 -30 5 -40-40a -50 -500 -200 -150 -100 -50 0 50 100 150 200 -200 -150 -100 -50 50 100 150 200 0 -10% y (mm) Run 2233 x (mm)

- Analyzing recent data Quad scan (Q789) with 6-200 data Q789 +10%

Step I: Data vs MC Comparison

- Analyzing recent data Quad scan (Q789) with 6-200 data Q789 +30%

