



### **Proton Source**

& Site Layout

Keith Gollwitzer

Accelerator Division

Fermi National Accelerator Laboratory

Muon Accelerator Program Review Fermilab, August 24, 2010



#### Outline



- Proton Source Proton Driver
  - Design goals
  - Project X
    - Design criteria & description
    - Upgrade path
  - Challenges
- Milestones
- Initial concept for site layout
- Summary



### **Design Goals**



- 4 MW proton beam onto target
- Proton energy 5-15 GeV
- Bunch structure
  - 1-3 ns rms bunch length
  - Neutrino Factory
    - 3 bunch train in 320 μs at 50 Hz
  - Muon Collider
    - "Single" bunch at 15 Hz



### Project X as a Starting Point



- Project X design criteria
  - A neutrino beam for long baseline neutrino oscillation experiments
    - 2 MW proton beam with energy between 60-120 GeV
  - Kaon- and muon-based precision experiments running simultaneously with the neutrino program
  - A path toward a muon source for a possible future Neutrino Factory, and, potentially, a Muon Collider at the Energy Frontier



# Project X Design Evolution



- Initial design (8 GeV pulsed linac)
  - Did not support kaon/muon precision measurement program
- Second design (about to be released)
  - CW 3 GeV 1 mA H<sup>-</sup> linac
    - Above kaon production threshold
    - Produces low energy pions for low energy muon experiments
    - Allows nuclear physics experiments
    - Low energy chopping allow supporting different experiment needs
      - 325 MHz low energy RF system
    - Splitter/switchyard to simultaneously support the experiments
  - 3-8 GeV pulsed linac (accumulation in Recycler)
    - Satisfies neutrino 2 MW program
    - Additional 8 GeV beam power available for other experiments



## Project X: 8 GeV Numbers



1 mA CW linac to feed pulsed linac

| Final Beam<br>Energy<br>(GeV) | MI Cycle Time<br>(s) | Particles per<br>MI Cycle<br>(10 <sup>12</sup> ) | 8 GeV Beam<br>Power<br>(kW) | Accumulation Duty Factor (%) |
|-------------------------------|----------------------|--------------------------------------------------|-----------------------------|------------------------------|
| 60                            | 0.6                  | 125                                              | 267                         | 3.33                         |
| 120                           | 1.33                 | 139                                              | 133                         | 1.67                         |

- Design a system to deliver 300-400 kW to satisfy neutrino program & any other 8 GeV experiments
  - Accumulation duty factor of 3.75% to 5%



### Project X to Proton Driver



- Proton Driver energy 5-15 GeV
  - Project X delivers top energy of 8 GeV
- Proton Driver beam power of 4 MW
  - Project X designed to deliver 400 kW at 8 GeV
- Proton Driver 1-3 ns bunch length at 15/50 Hz
  - Will require a Proton Accumulation Ring
  - Will require a Bunching Compressor Ring



### Basic Concept for 8 GeV

4 MW 8 GeV



#### Proton Accumulation Ring

- Considerations
  - Space charge
  - H<sup>-</sup> stripping
- Bunch Compressor Ring
  - Considerations
    - Forming 1-3 ns bunches
    - NF: keeping short bunch length for many turns before 2<sup>nd</sup> and 3<sup>rd</sup> bunch extractions
    - MC: one bunch or delivery of several bunches at once to target



Compression

**Proton Source** 

Muon Source



#### Beam Power



- 1 mA Project X H<sup>-</sup> CW linac means 50% of beam to 8 GeV to achieve 4 MW
  - Accumulation duty factor is 50%
    - 10 ms @ 50 Hz or 33 ms @ 15 Hz
      - Overheating of stripping foil
      - Development of laser stripping technology
  - "Pulsed" linac for 3-8 GeV
- Possible upgrade path(s) of Project X
  - Increase CW linac beam current to 4-5 mA
    - ~2 ms @ 50 Hz or ~8 ms @ 15 Hz
  - Convert 3-8 GeV pulsed linac to CW
    - If keep to 1 mA



#### **Bunch Structure**



- Bunch in Proton Accumulation Ring
- Transfer to Bunch Compressor Ring
- Rotate to narrow bunch length to 1-3 ns

| Facility | Cycle<br>Frequency<br>(Hz) | Bunches | Particles per<br>Bunch<br>(10 <sup>12</sup> ) | Time between<br>Bunch Extractions<br>(µs) |
|----------|----------------------------|---------|-----------------------------------------------|-------------------------------------------|
| NF       | 50                         | 3       | 21                                            | 160                                       |
| MC       | 15                         | 1       | 210                                           | _                                         |
| MC       | 15                         | 8       | 26                                            | Single-turn                               |



Single-turn Multi-bunch
Targeting





#### Muon Collider Proton Driver Trombone Schematic

(not to scale; bunches arrive simultaneously on target)





### Rings Design Challenges



- Accumulation duty factor (stripping)
- Space charge
- Longitudinal stabilities
- Aperture versus magnet strength
- Peak RF voltage



#### Milestones



- FY11 IDS-NF-IDR
  - Including site specific engineering
- FY11 Preliminary design of upgraded Project X
- FY13 Specify Proton Driver initial configuration
- FY14 Final IDS-NF RDR report
- FY14 Interim MC DFS report
- FY16 Final MC DFS report



## Project X to Proton Driver







### **Neutrino Factory**







### Muon Collider







### Summary



- Designing Project X to allow for upgrades to support proton source for NF/MC
- Designing Proton Accumulation Ring and Bunch Compressor Ring
- Designing Muon Collider "single bunch" delivery system
- Work upon site layout as concepts/schemes change