

Final Remarks

Michael S. Zisman
Center for Beam Physics
Accelerator & Fusion Research Division
Lawrence Berkeley National Laboratory

Muon Accelerator Program Review-Fermilab August 25, 2010

Outline

- Introduction
- Responses to selected review topics
- Charge topics
 - Scientific and technical merit
 - Appropriateness of approach
 - Competency of personnel and resources
 - Reasonableness of budget
 - Critical technical issues
 - Milestones
 - Management structure
- Summary

Introduction

- In past two days the MAP R&D plan has been presented
 - design and simulation
 - technology development
 - system tests
- Natural and seamless extension of predecessor programs
 - NFMCC + MCTF
- Development of intense muon beam facilities offers potential of unique and powerful scientific program, in line with P5 recommendations

Review Comments (1)

- "Go/No-Go" risk list
 - 6D cooling
- Performance risk list
 - proton driver intensity
 - final cooling
 - final focus (detector backgrounds)

Review Comments (2)

- Total power consumption
 - estimated (Study 2) for NF at ~50-60 MW (at 15 Hz)
 - no detailed estimate for MC yet, as design incomplete
 - range expected to be ~120-200 MW
 - design choices (especially E) will affect this
 - advantage of MC over other lepton colliders
- Muon polarization
 - "if we had it, theorists would find clever ways to use it; if not theorists will find clever ways around it"
 - E. Eichten, this review

Review Comments (3)

- MICE magnets
 - recognized as critical and getting attention
 - plans being formulated and resources to carry them out have been identified
- Pre-installation test of MICE RF
 - such a test anticipated, either at MTA or RAL
 - FY10 supplemental funds will permit test vacuum vessel
 - can also test LN-temperature operation

Review Comments (4)

- Magnet program
 - involves participants (and expertise) from many institutions
 - BNL, LBNL, Fermilab, U.-Miss.
 - leveraged by
 - funded SBIR projects
 - work of core programs and LARP

Review Comments (5)

HTS contributions

- MAP becoming involved in broad effort to develop and explore HTS technology
 - VHFSMC, NHMFL, SBIR companies
- MAP is both a contributor and a customer
 - as contributor, we take responsibility for specific aspects of the development program
 - as customer, we provide a concrete focus and incentive for sustained development effort
 - it is important for MAP to play both these roles

Review Comments (6)

- Organizational structure
 - based on discussions with FNAL director and DOE
 - balance between R&D task and oversight will likely be discussed further
 - structures within MAP are believed to be helpful to Program Director
 - "collaboration" aspects have proven in the past to benefit our efficiency and ability to get buy-in on priority and technical decisions

Scientific and Technical Merit

- Design & Simulations will:
 - deliver first end-to-end MC design (and cost range)
 - participate in NF RDR (under IDS-NF auspices)
- Technology Development will:
 - develop high-gradient RF cavities
 - better understanding of NCRF breakdown phenomena
 - more effective methods for SRF fabrication
 - push limits of magnet technology
 - high field solenoids with HTS, open mid-plane dipoles
- Systems Tests will:
 - demonstrate 4D (and maybe 6D) cooling in MICE
 - define and prepare for 6D cooling test (if needed)

Appropriateness of Approach (1)

Design & Simulations

- continuing development of required simulation tools (ICOOL, G4beamline)
 - testing against each other and experimental results
- developing cost-effective acceleration schemes
 - dog-bone RLAs; non-scaling FFAGs
- developing plausible 4D and 6D muon cooling channels
- contributing to high-power proton driver design

Appropriateness of Approach (2)

- Technology Development
 - developing promising approaches for high-gradient
 NCRF cavities
 - Be windows; magnetic insulation, ALD, HPRF,...
 - created MTA as dedicated test facility
 - exploring cost-effective fabrication methods for lowfrequency SRF (~201 MHz) [NSF contribution]
 - exploring limits of HTS magnet technology
 - continuing development of free Hg-jet target facility
- Systems Tests
 - participating in MICE [includes NSF contribution]
 - iterating with D&S and TD ⇒ bench test

Competency of Personnel & Resources

- Core group of NFMCC and MCTF scientists and engineers involved since 1996
 - augmented by experienced design and operations effort from Tevatron, B factory, and RHIC
 - significant accomplishments already
 - MERIT, NF design studies,...
- Broad participation
 - labs, universities, SBIR companies
 - brings particle physicists into the accelerator game
- MAP provides excellent opportunity for training
 - hands on participation; guidance from senior physicists and engineers

Reasonableness of Budget

- Effort needs and corresponding budgets based on experience in similar tasks
 - SWF dominates the funding request
 - Feasibility Studies 1, 2, 2a serve as good models
 - effort needed for major hardware tasks well calibrated
- M&S needs based on scaling from ongoing FY10 development activities
 - milestones, and procedures for choosing, in place
 - need discipline to avoid following too many parallel paths for too long (built into our plan)
- Inevitable adjustments to R&D plan will be accommodated within MAP budget envelope

Critical Technical Issues

- Identified several critical issues
 - Design & Simulation
 - designing and simulating all portions of MC facility
 - need complete description to permit end-to-end simulations
 - RF breakdown simulations
 - Technology Development
 - producing high-gradient NCRF in strong magnetic field
 - producing very high field solenoids for final cooling
 - within reason, neither of these represents a potentially fatal flaw
 - partial mitigation should be possible as limits understood
 - System Tests
 - timely and successful completion of MICE
 - delays we face not intrinsically related to MICE or MC design
 - mainly thermal issues due to the choice in cooling

Milestones

- Milestones identified down to Level 2
 - these will enable MAP to deliver on its primary goals
 - MC-DFS; NF-RDR; MICE; 6D bench test
 - "down-selection" explicitly called out
 - Project Director will ensure that this happens
 - will define criteria well in advance
- Milestones will be monitored and updated as appropriate depending on outcome of initial R&D
 - we cannot predict in advance all R&D results
 - must (and will) stay "light on our feet"

Management Structure

- MAP management structure in place and functioning
 - Program Director has authority to make decisions on technical directions and budget allocations
 - mechanisms for obtaining advice on both are in place
 - Technical Board; Institutional Board
 - roles for all high-level functions defined in Management Plan
- Strong oversight roles defined
 - Fermilab Director; MCOG+MUTAC; PMG; DOE PM;
 DOE program reviews

Timing

- International decisions on what the next big project(s) will be are expected in a 2014 time frame
 - if the MC is to have a "seat at the table" the proposed R&D effort is urgent
 - at the nominal funding level, we must stay very focused to be ready in time
 - augmented funding and more community involvement would therefore be of great benefit

Summary

- MAP explores a possible scientific future for Fermilab and U.S. particle physics
 - innovative and cost-effective lepton collider
 - would bring energy frontier back to U.S.
- MAP participants well-motivated to succeed
 - accelerator and particle physicists working together toward common goal
 - support from DOE, NSF and Fermilab management
 - these are strengths of our program
- Benefits of a Muon Collider facility easily justify the proposed MAP plan as the appropriate next step to assess its feasibility and cost

Final Thought

- Challenges of a muon accelerator complex go well beyond those of standard beams
 - developing solutions
 requires substantial R&D
 effort to specify
 - expected performance, technical feasibility/risk, cost (matters!)

Critical to do experiments and build components. Paper studies are not enough!

"I guess there'll <u>always</u> be a gap between science and technology."