A Program for Accelerator Based Backgrounds for a Muon Collider

Steve Kahn

Muons, Inc.

14 July 2010

S. Kahn -- Muon Collider Backgrounds

Background on Muons, Inc. and NIU

- Muons, Inc. is a small company composed primarily of physicists that earns a large fraction of its money from SBIR grants from DOE.
- We have just been awarded (in June) a phase I grant in collaboration with Northern Illinois University to simulate accelerator backgrounds for a Muon Collider.
 - This is a new project for us consequently we are light in results at this point. We are describing our plan of action.
 - Our team include
 - Steve Kahn, Mary Anne Cummings, Tom Roberts, Muons, Inc.
 - Dave Hedin, Aaron Morris, NIU
 - Joe Kominski, Lewis University
- As part of my personal experience, I worked with Iuliu Stumer to calculate muon collider backgrounds circa 1997.
 - For those calculations we used Geant 3.21
 - These calculations along with MARS provided mutual confidence in the understanding of accelerator backgrounds to a muon collider.

μ

What Did We Promise?

- The development of a Monte Carlo package to simulate muon accelerator backgrounds.
 - The package should be able to accept a MAD lattice description.
 - Provide particle fluxes.
 - Output a file of background events for use with the physics analysis.
- Verification of the MC package by comparing to MARS.
- Evaluate the shielding necessary for a muon collider detector.
 - What cone angle do we need?
- Develop output format for background events so they can be used for physics analysis.

S. Kahn -- Muon Collider Backgrounds

The Simulation Package

- Simulate accelerator based backgrounds in the muon collider intersection region.
- This package will use G4beamline. (To be described)
- The program input uses the *MAD* lattice description of collider beam
 - We are currently the Eliana Gianfelice-Wendt's recent lattice for our studies.
 - Using the *MAD* lattice description allows rapid adjustment to changes in the collider lattice design.
- Model material in beam line and detector interface.
 - Reasonable description of magnet material and magnetic fields.
 - Accommodate special kinds of magnets such as open mid-plane dipoles
 - Dipoles are arcs! Significant magnet sagitta with 10 m long dipoles
 - Masks and collimators
 - Conic shielding
- Requirements
 - Establish muon closed orbit
 - Assume that muon can decay anywhere along the orbit.
 - Track decay electrons as primary particles
- Scoring energy deposition.

The G4beamline Program

- This program provides an interface to the *GEANT4* toolkit that allows the user to perform particle tracking simulations without having to code in C++ or to compile the program himself.
- The input to *G4beamline* is a script of line commands that describe the geometry, fields and other parameters to setup the simulation.
 - The input format is particularly well suited for beam line descriptions with dipole, quadrupole, etc. beam elements.
- *G4beamline* makes effective use of graphics for verifying geometry setup and visualization of particle tracking.
- *G4beamline* is freely available to the community (the price is right) at http://G4beamline.muonsinc.com

The BruitDeFond Program

- The *BruitDeFond* program creates an input file to G4beamline that describes the intersection region of a muon collider.
- The collider configuration is meant to be flexible and uses the MAD element description.
 - We currently have modeled ± 75 m from the IP.
 - We are currently using Eliana Gianfelice-Wendt's recent lattice.
- Magnet description is important. Currently all magnets are described by *multipole* command.
 - Quadrupole description similar to Kashikhin design (used in the MARS analysis).
 - Material is described my multiple tubes of Nb₃Sn, SS collar, Fe yoke.
 - Dipole description is currently $\cos\theta$ surrounded by a steel yoke.
 - This will evolve to an open mid-plane model.

Quad	Units	QLB1	QLB2	QLB3	QLB4	QLB5	QF4
Gradient	T/m	250	187	-131	-131	-89	82
Center	m	6.75	8.65	10.85	12.85	15.7	23.9
Position							
Radial	cm	3.5	5	7.5	7.5	7.5	7.5
Aperture							
Quench	T/m	282	209	146	146		
Gradient							
at 4.5• ?							

Note the relatively small quench margin

S. Kahn -- Muon Collider Backgrounds

Sources of Muon Collider Backgrounds

- Electrons from muon decays.
 - We expect 4.3×10^5 muon decays per meter for 750 GeV μ^+ , μ^- with $10^{12} \mu$ per bunch.
- Synchrotron radiation from decay electrons.
- Photo-nuclear interactions.
 - This is the source of hadron backgrounds. This is largely neutrons.
- Bethe-Heitler muon production: $\gamma A \rightarrow \mu^+ \mu^- X$
 - Source is energetic photons on beam line material.
- Incoherent pair production: $\mu^+\mu^- \rightarrow \mu^+\mu^-e^+e^-$
- Beam halo.

BeamMaker – A tool to provide background events to G4beamline

- Decay electrons are fed to G4beamline uniformly along the muon reference orbit.
- Electron energy generated using Michel decay and boosting from muon frame to lab.
- A constant weight factor can be used to normalize background to the number of muons per bunch.
- Other backgrounds can be fed to G4beamline in a similar manner.

μ

Preliminary G4BL Simulation of Collider Ring IR Magnets

- Using G4BL to simulate the IR region of *Eliana's New Lattice*.
- e^+ from 750 GeV μ^+ decays uniformly along the beam line. Muons decay distributions using Michel description.
- No synchrotron radiation currently included.
 - These are included in Geant4, but have not been able to activate them.
- Fields are generic multipole fields without fringing end fields.
- Preliminary result shows that ~40% of the electron tracks that hit QLB1 hit the magnet face, not the inner aperture.
 - These tracks can be removed collimator shields.

Decay Electrons Tracked to the IP

- The figure shows an x-y plot of e⁺ from decays tracked to the IP
 - The figure represents 25000 decays, but only 1600 make it to the IP.
 - Vertical ellipse shows focused beam with $\sigma_{x,y} \approx 2 \text{ mm}$.
 - Horizontal mid-plane events could be possible background, but they would not make it into the detector.
- It is premature to suggest that this represents results.

Energy Deposition Studies

- Figure shows MARS simulation (by Vadim Alexakhin) of electron tracks in vicinity of IR quads.
 - This should provide the basis of a thermal analysis to determine a temperature profile of these magnets.

14

μ

Physics Processes of Interest that are needed in Geant4

- Gamma-nuclear interactions:
 - These are the only mechanisms that can produce hadron backgrounds in the detector.
 - Aaron Morris is looking at the number of hadrons produced in an energetic electron shower.
- Bethe-Heitler muon production.
- Synchrotron radiation
 - Code exists in Geant4, but I am not sure that it is active in G4beamline.
- Neutron thermalization.
 - Borated polyethylene removes neutrons at near thermalized energies.

Gamma Nuclear Interaction Models

There are four distinctive energy regions associated with gamma nuclear interactions. There are

- Giant Dipole Resonance RegionA- "Quasi-deuteron" RegionB- Meson RegionC
- Quark Fragmentation Region

D

Particle production for a 100 GeV/c electron beam on a Tungsten target

1.E+07 100 GeV e+ 1.E + 061.E+05 Tungsten n Particle Count Target 1.E+04 1.E+03 1.E + 021.E + 011.E + 000 10 20 30 40 50 60 70 80 90 100 **Radiation Length** Aaron Morris **—**m0

Main Particle Counts at Various Radiation Lengths

S. Kahn -- Muon Collider Backgrounds

Neutron Kinetic Energy Spectrum at 1μ X₀ from 100 GeV electrons on Tungsten

18

Summary

- We are developing a simulation package for accelerator based backgrounds to a muon collider.
 - The package uses G4beamline and Geant4 for the simulation.
 - Develop facilities in G4beamline for detector background and associated analysis.
- We need to verify the simulation package.
 - Compare results to MARS
 - Verify Geant4 physics processes needed are active.
- We would like to analyze the conical shielding yielding background vs. angle.