E-Cloud and TMCI Data Studies at CERN SPS LARP CM-15 November 1-3, 2010

J.D. Fox¹, T. Mastorides¹, C. Rivetta¹, M. Swiatlowski¹, O. Turgut¹,
M. Furman², S. De Santis², R. Secondo², J. L. Vay², G. Arduini³,
W. Hofle³, G. Rumolo³, B. Salvant³

¹SLAC, ²LBL, ³CERN

November 2, 2010

Outline

1 Introduction

Goals Measurements Today

2 E-Cloud Data

Overview Results

3 TMCI Data Overview

Results

4 Conclusions

Comparing Instabilities Future Work

Introduction

M. Swiatlowski (SLAC)

 $\mathsf{ECloud} + \mathsf{TMCI}$

November 2, 2010 3 / 25

Goals

Develop Analysis Techniques

- Can we develop a common system to characterize the bunch dynamics interacting with either e-clouds or machine impedances?
 - Capture important characteristics for feedback control design
 - Growth rates of oscillations?
 - Frequency of oscillations?
 - Spread in tunes?

Develop Analysis Techniques

- Can we develop a common system to characterize the bunch dynamics interacting with either e-clouds or machine impedances?
 - Capture important characteristics for feedback control design
 - Growth rates of oscillations?
 - Frequency of oscillations?
 - Spread in tunes?

Develop Analysis Techniques

- Can we develop a common system to characterize the bunch dynamics interacting with either e-clouds or machine impedances?
 - Capture important characteristics for feedback control design
 - Growth rates of oscillations?
 - Frequency of oscillations?
 - Spread in tunes?

< ロト < 同ト < ヨト < ヨ

• Multiple datasets, instabilities

- Both TMCI and ECloud conditions
- Compare different types of instabilities: is one feedback system capable of addressing both?
- Analysis techniques enable comparison of data and multi-particle simulation codes
 - Want to validate codes (WARP, HEADTAIL) using real data from SPS
 - Studies limited by availability of MD days: validated simulation will allow for many more tests
 - Multi-particle simulation codes are a perfect test-bench to understand design models and test identification and analysis tools as well as feedback control design

• Multiple datasets, instabilities

- Both TMCI and ECloud conditions
- Compare different types of instabilities: is one feedback system capable of addressing both?
- Analysis techniques enable comparison of data and multi-particle simulation codes
 - Want to validate codes (WARP, HEADTAIL) using real data from SPS
 - Studies limited by availability of MD days: validated simulation will allow for many more tests
 - Multi-particle simulation codes are a perfect test-bench to understand design models and test identification and analysis tools as well as feedback control design

- Multiple datasets, instabilities
 - Both TMCI and ECloud conditions
 - Compare different types of instabilities: is one feedback system capable of addressing both?
- Analysis techniques enable comparison of data and multi-particle simulation codes
 - Want to validate codes (WARP, HEADTAIL) using real data from SPS
 - Studies limited by availability of MD days: validated simulation will allow for many more tests
 - Multi-particle simulation codes are a perfect test-bench to understand design models and test identification and analysis tools as well as feedback control design

- Multiple datasets, instabilities
 - Both TMCI and ECloud conditions
 - Compare different types of instabilities: is one feedback system capable of addressing both?
- Analysis techniques enable comparison of data and multi-particle simulation codes
 - Want to validate codes (WARP, HEADTAIL) using real data from SPS
 - Studies limited by availability of MD days: validated simulation will allow for many more tests
 - Multi-particle simulation codes are a perfect test-bench to understand design models and test identification and analysis tools as well as feedback control design

- Multiple datasets, instabilities
 - Both TMCI and ECloud conditions
 - Compare different types of instabilities: is one feedback system capable of addressing both?
- Analysis techniques enable comparison of data and multi-particle simulation codes
 - Want to validate codes (WARP, HEADTAIL) using real data from SPS
 - Studies limited by availability of MD days: validated simulation will allow for many more tests
 - Multi-particle simulation codes are a perfect test-bench to understand design models and test identification and analysis tools as well as feedback control design

- Multiple datasets, instabilities
 - Both TMCI and ECloud conditions
 - Compare different types of instabilities: is one feedback system capable of addressing both?
- Analysis techniques enable comparison of data and multi-particle simulation codes
 - Want to validate codes (WARP, HEADTAIL) using real data from SPS
 - Studies limited by availability of MD days: validated simulation will allow for many more tests
 - Multi-particle simulation codes are a perfect test-bench to understand design models and test identification and analysis tools as well as feedback control design

- Multiple datasets, instabilities
 - Both TMCI and ECloud conditions
 - Compare different types of instabilities: is one feedback system capable of addressing both?
- Analysis techniques enable comparison of data and multi-particle simulation codes
 - Want to validate codes (WARP, HEADTAIL) using real data from SPS
 - Studies limited by availability of MD days: validated simulation will allow for many more tests
 - Multi-particle simulation codes are a perfect test-bench to understand design models and test identification and analysis tools as well as feedback control design

< ロト < 同ト < ヨト < ヨ

• Use wide bandwidth beam position monitors (BPM)

- Run through $\Delta\Sigma$ hybrids to generate sum and difference channels
- Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between 4 3GHz bandwidth inputs
- Significant post-processing improves data quality dramatically
 - Pick-up and cable frequency response equalized
 - Synchrotron oscillations removed: fix center of bunch
 - Data separated into different bunches

- Use wide bandwidth beam position monitors (BPM)
 - Run through $\Delta\Sigma$ hybrids to generate sum and difference channels
 - Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between 4 3GHz bandwidth inputs
- Significant post-processing improves data quality dramatically
 - Pick-up and cable frequency response equalized
 - Synchrotron oscillations removed: fix center of bunch
 - Data separated into different bunches

- Use wide bandwidth beam position monitors (BPM)
 - Run through $\Delta\Sigma$ hybrids to generate sum and difference channels
 - Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between 4 3GHz bandwidth inputs
- Significant post-processing improves data quality dramatically
 - Pick-up and cable frequency response equalized
 - Synchrotron oscillations removed: fix center of bunch
 - Data separated into different bunches

- Use wide bandwidth beam position monitors (BPM)
 - Run through $\Delta\Sigma$ hybrids to generate sum and difference channels
 - Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between 4 3GHz bandwidth inputs
- Significant post-processing improves data quality dramatically
 - Pick-up and cable frequency response equalized
 - Synchrotron oscillations removed: fix center of bunch
 - Data separated into different bunches

- Use wide bandwidth beam position monitors (BPM)
 - Run through $\Delta\Sigma$ hybrids to generate sum and difference channels
 - Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between 4 3GHz bandwidth inputs
- Significant post-processing improves data quality dramatically
 - Pick-up and cable frequency response equalized
 - Synchrotron oscillations removed: fix center of bunch
 - Data separated into different bunches

- Use wide bandwidth beam position monitors (BPM)
 - Run through $\Delta\Sigma$ hybrids to generate sum and difference channels
 - Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between 4 3GHz bandwidth inputs
- Significant post-processing improves data quality dramatically
 - Pick-up and cable frequency response equalized
 - Synchrotron oscillations removed: fix center of bunch
 - Data separated into different bunches

< ロト < 同ト < ヨト < ヨ

- Use wide bandwidth beam position monitors (BPM)
 - Run through $\Delta\Sigma$ hybrids to generate sum and difference channels
 - Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between 4 3GHz bandwidth inputs
- Significant post-processing improves data quality dramatically
 - Pick-up and cable frequency response equalized
 - Synchrotron oscillations removed: fix center of bunch
 - Data separated into different bunches

イロト イポト イヨト イヨ

Goals For Today's Talk

• Show data analysis techniques

- New data from MD's in July, August 2010
- Show first comparisons of ECloud and TMCI data

Today

Goals For Today's Talk

- Show data analysis techniques
- New data from MD's in July, August 2010
- Show first comparisons of ECloud and TMCI data

Today

Goals For Today's Talk

- Show data analysis techniques
- New data from MD's in July, August 2010
- Show first comparisons of ECloud and TMCI data

E-Cloud Data

M. Swiatlowski (SLAC)

 $\mathsf{ECloud} + \mathsf{TMCI}$

November 2, 2010 8 / 25

Introduction

- Inject 4 batches of 72 bunches each
- Here, look at batch 2 and 3 during injection of 3
- Standard synchrotron frequency, 315 Hz

E-Cloud Data R

Results

Displacement

- Simplest presentation of data: Δ and Σ channels
- Vertical displacement plot shows $\Delta \operatorname{mean}(\Delta)$
 - Shows vertical displacements for different section of the bunch: useful for identifying oscillations in head/tail

Displacement Over Time

- Vertical axis is turns, z axis is amplitude
- Stable initially, but then large oscillations in tail, turn 125
- Oscillations spread to entire bunch, turn 225

RMS Growth

- Want a metric for energy growth: consider $(\sum_i (\Delta \text{mean}(\Delta))^2)^{1/2}$
 - Take RMS of displacement from mean, summed over slices
- Take log plot, fit exponential in linear regions
 - Roughly describes rate of growth of energy in the bunch; is there a different growth rate for individual slices?
 - Note interesting relaxation oscillations

Bandwidth

- Need to consider frequency spectrum of signal to be processed by the receiver, amplifiers and kickers
 - Define sampling frequency of ADC/DACs
 - How do the frequencies evolve over time?

Tune Shifts

- Also want to consider tune shifts: how does the E-Cloud affect tune across slices?¹
- Average across data before E-Cloud instability, and then during/after
 - Tune shifts and amplitude grows, consistent with prior results

TMCI Data

M. Swiatlowski (SLAC)

 $\mathsf{ECloud} + \mathsf{TMCI}$

November 2, 2010 15 / 25

Introduction

- Single bunch studies for TMCI focus on impedance issues, not E-Cloud
- Variable bunch size: here, 3×10^{11}
- Low longitudinal emittance and voltage \rightarrow low synchrotron frequency (257 Hz)
 - Easier to see generate TMCI instability with low emittance

Displacement

- Only one bunch: can't compare unstable to stable
- Instability is very similar to E-Cloud: head vs. tail oscillations
 - How similar are these oscillations over time, frequency?
 - Can we distinguish TMCI from pure dipole movement?

Displacement Over Time

- Over time, similarities and differences with E-Cloud
 - Growth in tail, spreads to head
 - However, massive charge loss (as seen in Σ channel)– don't see this in F-Cloud
 - Makes understanding data after charge loss difficult: too many non-linear effects simultaneously

RMS Growth

- Much, much slower growth than in E-Cloud
- Growth rate seems to have two different regions, slow and fast
 - First region is 50x slower growth than E-Cloud

Bandwidth

- Very different from E-Cloud situation
 - Instead of bursting, see growth of high-frequency components
 - Black regions have high gradients in amplititude

Tune Shifts

- Difficult to understand: charge loss at peak of instability
- Much finer measurement because of much longer dataset
- No appreciable shift in tune as instability develops, but amplitude does grow

Conclusions

M. Swiatlowski (SLAC)

 $\mathsf{ECloud} + \mathsf{TMCI}$

November 2, 2010 22 / 25

▲□▶ ▲圖▶ ▲温▶ ▲温≯

• E-Cloud and TMCI instabilities exhibit several important differences

- Tune shift behavior
- Characteristics of frequency change as instability develops
- RMS growth rate
- Still, similar enough that single control may be possible
 - Growth rate for E-Cloud is faster than TMCI in this dataset, so E-Cloud system may be able to handle TMCI
 - Difference in synchrotron frequency not enough to explain difference inner growth rates
 - Frequency changes are different, but within the same range

- E-Cloud and TMCI instabilities exhibit several important differences
 - Tune shift behavior
 - Characteristics of frequency change as instability develops
 - RMS growth rate
- Still, similar enough that single control may be possible
 - Growth rate for E-Cloud is faster than TMCI in this dataset, so E-Cloud system may be able to handle TMCI
 - Ofference in synchrotron frequency not enough to explain difference in growth rates
 - Frequency changes are different, but within the same range

- E-Cloud and TMCI instabilities exhibit several important differences
 - Tune shift behavior
 - Characteristics of frequency change as instability develops
 - RMS growth rate
- Still, similar enough that single control may be possible
 - Growth rate for E-Cloud is faster than TMCI in this dataset, so E-Cloud system may be able to handle TMCI
 - Difference in synchrotron frequency not enough to explain difference in growth rates
 - Frequency changes are different, but within the same range

- E-Cloud and TMCI instabilities exhibit several important differences
 - Tune shift behavior
 - Characteristics of frequency change as instability develops
 - RMS growth rate
- Still, similar enough that single control may be possible
 - Growth rate for E-Cloud is faster than TMCI in this dataset, so E-Cloud system may be able to handle TMCI
 - Difference in synchrotron frequency not enough to explain difference in growth rates
 - Frequency changes are different, but within the same range

Plans For Next MDs and Comparison to Simulation

- Look at additional TMCI data: what is 'real' growth rate?
- What is the growth rate in individual slices?
 - Growth in tail is what we actually want to control
- Now that techniques are developed, look at multi-particle simulations and reduced models
 - Validate simulation: make progress towards specifying feedback system

Plans For Next MDs and Comparison to Simulation

- Look at additional TMCI data: what is 'real' growth rate?
- What is the growth rate in individual slices?
 - · Growth in tail is what we actually want to control
- Now that techniques are developed, look at multi-particle simulations and reduced models
 - Validate simulation: make progress towards specifying feedback system

Plans For Next MDs and Comparison to Simulation

- Look at additional TMCI data: what is 'real' growth rate?
- What is the growth rate in individual slices?
 - · Growth in tail is what we actually want to control
- Now that techniques are developed, look at multi-particle simulations and reduced models
 - Validate simulation: make progress towards specifying feedback system

Thank you for your attention!

M. Swiatlowski (SLAC)

 $\mathsf{ECloud} + \mathsf{TMCI}$

November 2, 2010 25 / 25