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Introduction Goals

Develop Analysis Techniques

• Can we develop a common system to characterize the bunch
dynamics interacting with either e-clouds or machine impedances?

• Capture important characteristics for feedback control design
• Growth rates of oscillations?
• Frequency of oscillations?
• Spread in tunes?
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Introduction Goals

What Are They Used For?

• Multiple datasets, instabilities
• Both TMCI and ECloud conditions
• Compare different types of instabilities: is one feedback system capable

of addressing both?

• Analysis techniques enable comparison of data and multi-particle
simulation codes

• Want to validate codes (WARP, HEADTAIL) using real data from SPS
• Studies limited by availability of MD days: validated simulation will

allow for many more tests
• Multi-particle simulation codes are a perfect test-bench to understand

design models and test identification and analysis tools as well as
feedback control design
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Introduction Measurements

Getting to the Data

• Use wide bandwidth beam position monitors (BPM)
• Run through ∆Σ hybrids to generate sum and difference channels
• Used TekTronix DPO7000 Oscilloscope, with 40 GSps shared between

4 3GHz bandwidth inputs

• Significant post-processing improves data quality dramatically
• Pick-up and cable frequency response equalized
• Synchrotron oscillations removed: fix center of bunch
• Data separated into different bunches
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Introduction Today

Goals For Today’s Talk

• Show data analysis techniques

• New data from MD’s in July, August 2010

• Show first comparisons of ECloud and TMCI data
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E-Cloud Data
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E-Cloud Data Overview

Introduction

• Inject 4 batches of 72 bunches each

• Here, look at batch 2 and 3 during injection of 3

• Standard synchrotron frequency, 315 Hz
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E-Cloud Data Results

Displacement

• Simplest presentation of data: ∆ and Σ channels

• Vertical displacement plot shows ∆−mean(∆)
• Shows vertical displacements for different section of the bunch: useful

for identifying oscillations in head/tail
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E-Cloud Data Results

Displacement Over Time

• Vertical axis is turns, z axis is amplitude
• Stable initially, but then large oscillations in tail, turn 125
• Oscillations spread to entire bunch, turn 225
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E-Cloud Data Results

RMS Growth

• Want a metric for energy growth: consider
(∑

i (∆−mean(∆))2
)1/2

• Take RMS of displacement from mean, summed over slices
• Take log plot, fit exponential in linear regions

• Roughly describes rate of growth of energy in the bunch; is there a
different growth rate for individual slices?

• Note interesting relaxation oscillations
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E-Cloud Data Results

Bandwidth

• Need to consider frequency spectrum of signal to be processed by the
receiver, amplifiers and kickers

• Define sampling frequency of ADC/DACs
• How do the frequencies evolve over time?
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E-Cloud Data Results

Tune Shifts

• Also want to consider tune shifts: how does the E-Cloud affect tune
across slices?1

• Average across data before E-Cloud instability, and then during/after
• Tune shifts and amplitude grows, consistent with prior results
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TMCI Data
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TMCI Data Overview

Introduction

• Single bunch studies for TMCI focus on impedance issues, not
E-Cloud

• Variable bunch size: here, 3× 1011

• Low longitudinal emittance and voltage → low synchrotron frequency
(257 Hz)

• Easier to see generate TMCI instability with low emittance
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TMCI Data Results

Displacement

• Only one bunch: can’t compare unstable to stable
• Instability is very similar to E-Cloud: head vs. tail oscillations

• How similar are these oscillations over time, frequency?
• Can we distinguish TMCI from pure dipole movement?
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TMCI Data Results

Displacement Over Time

• Over time, similarities and differences with E-Cloud
• Growth in tail, spreads to head
• However, massive charge loss (as seen in Σ channel)– don’t see this in

E-Cloud
• Makes understanding data after charge loss difficult: too many

non-linear effects simultaneously
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TMCI Data Results

RMS Growth

• Much, much slower growth than in E-Cloud
• Growth rate seems to have two different regions, slow and fast

• First region is 50x slower growth than E-Cloud
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TMCI Data Results

Bandwidth

• Very different from E-Cloud situation
• Instead of bursting, see growth of high-frequency components
• Black regions have high gradients in amplititude
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TMCI Data Results

Tune Shifts

• Difficult to understand: charge loss at peak of instability

• Much finer measurement because of much longer dataset

• No appreciable shift in tune as instability develops, but amplitude
does grow
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Conclusions
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Conclusions Comparing Instabilities

Single Feedback for E-cloud and TMCI?

• E-Cloud and TMCI instabilities exhibit several important differences
• Tune shift behavior
• Characteristics of frequency change as instability develops
• RMS growth rate

• Still, similar enough that single control may be possible
• Growth rate for E-Cloud is faster than TMCI in this dataset, so

E-Cloud system may be able to handle TMCI
• Difference in synchrotron frequency not enough to explain difference in

growth rates

• Frequency changes are different, but within the same range
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Conclusions Future Work

Plans For Next MDs and Comparison to Simulation

• Look at additional TMCI data: what is ‘real’ growth rate?

• What is the growth rate in individual slices?
• Growth in tail is what we actually want to control

• Now that techniques are developed, look at multi-particle simulations
and reduced models

• Validate simulation: make progress towards specifying feedback system
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Thank you for your attention!
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