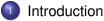
E-Clouds / TMCI : Feedback Models, System Implications

C. H. Rivetta¹ LARP Ecloud / TMCI Contributors: A. Bullitt¹, J. D. Fox¹, T. Mastorides¹, G. Ndabashimiye¹, M. Pivi¹, O. Turgut¹, J. Olsen², D. Van Winkle², W. Hofle³, B. Savant³, M. Furman⁴, R. Secondo⁴, J.-L. Vay⁴


> ¹Advanced Accelerator Research Department, SLAC ²AE Controls Electronics Eng., SLAC ³BE-RF Group CERN ⁴LBNL

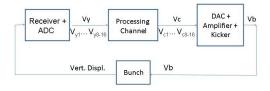

This work is supported by the US-LARP program and DOE contract #DE-AC02-76SF00515

C. H. Rivetta

CM15 - LARP Meeting

November 2, 2010 1

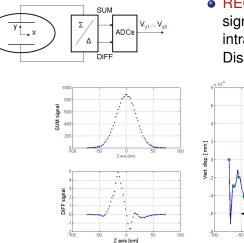
- Multi-particle simulation codes
- Feedback Control System
 - Reduced model intra-bunch dynamics
 - Next MD plan
 - Kicker Signal


Electron Cloud / TMCI Project - DOE LARP / CERN

- Motivation: Control E-cloud and TMCI effects in SPS and LHC via GHz bandwidth feedback
 - Complementary to E-cloud coatings, grooves, etc. Also TMCI
 - Anticipated instabilities at operating currents
 - Intrabunch Instability: Requires bandwidth sufficient to sense the vertical position and apply correction fields to multiple sections of a nanosecond-scale bunch.
- US LHC Accelerator Research Program (LARP) has supported a collaboration between US labs (SLAC, LBNL) and CERN
 - Large R & D effort coordinated on:
 - Non-linear Simulation codes (LBNL CERN SLAC)
 - Dynamics models/feedback models (SLAC Stanford STAR lab)
 - Machine measurements- SPS MD (CERN SLAC LBNL)
 - Hardware technology development (SLAC)

< ロ > < 同 > < 回 > < 回

Basics


- Feedback control is required when the original system is unstable or when performance cannot be achieved due to uncertainties in the the system characteristics
- Feedback control changes the dynamics of the original system stabilize - improve performance

- Vy Multiple samples of the vertical position along the bunch
- Vc Control signal
- Vb Momentum Kick
- Requirement for Feedback Control: Provide stability and satisfactory performance in the face of disturbances, system variations, and uncertainties.

CM15 - LARP Meeting

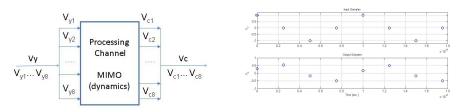
Basic Idea

 RECEIVER Measures BPM signals, estimates the intrabunch Vertical Displacement

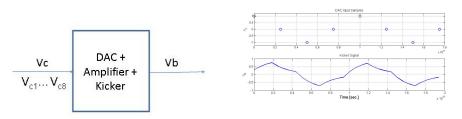
Vert.Disp
Samples

100

3nsec


Z axis [cm]

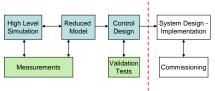
C. H. Rivetta


CM15 - LARP Meeting

Basic Idea

 PROCESSING CHANNEL Processes the multi-input signals and generates a multi-output control signal based on multiple input samples from previous turns.

Basic Idea



 DAC-Amplifier-Kicker Digital samples from the processing channel are converted to analog signal (DAC), amplified and converter into an EM field by the kicker.

Goal - Plans

R & D lines

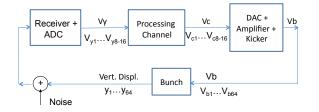
 Goal is to have a minimum prototype to fully understand the limitations of feedback techniques to mitigate E-cloud / TMCI effects in SPS.

R & D areas

- Non-Linear Simulation Codes Real Feedback Models Multibunch behavior
- Development and Identification of Mathematical Reduced Dynamics Models for the bunch
- Control Algorithms
- MD Coordination Analysis of MD data Data Correlation between MD data / Multiparticle results
- Study and Development of Hardware Prototypes

Multi-particle simulation codes

Reduced Model <--> Multiparticle Model <--> Real System (SPS ring)


- What is the difference between a Reduced Model and Multiparticle Model ?? Impact in the feedback system design??
 - Reduced Model: Gives a mathematically tractable tool to design the feedback control including system's performance specifications and system's external perturbations and uncertainties. (Model-Based Design)
 - Multi-particle Models: Gives a detailed behavior of the bunch dynamics. It is not a design tool but it is an excellent test-bench.
- Multi-particle simulation codes (WARP HeadTail CMAD) have been a very useful test-bench for designing MD analysis algorithms and tools.
- Important for the development of mathematical reduced dynamics models of the bunch.

< 67 >

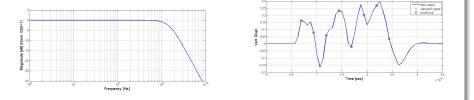
Multi-particle simulation codes

Next step related to feedback control system:

 Add realistic models representing the receiver, processing channel, amplifier and kicker hardware. Test-bench to test feedback control system design.

Models include frequency response, signal limits and noise

0	н I.	D :	etta
U.	п.	RIV	ella


November 2, 2010 10

Multi-particle simulation codes

Realistic models in the feedback channel

- Multi-particle codes interact with the feedback once per turn. Measure, Kick all samples representing the bunch at the same time.
- Feedback model has to follow that structure. Static matrix represents the transfer function of each block.

• Receiver:
$$V_y = M_R y$$
, $y = [y_1 ... y_{64}]^T$, $V_y = [V_{y1} ... V_{y8}]^T$

Requirements

- Original system unstable- Minimum gain for stability
- Delay in control action Maximum gain limit
- Bunch Dynamics Nonlinear tunes/growth rates change intrinsically
- Beam Dynamics change with the machine operation
- noise-perturbations rejected or minimized
- Vertical displacement signals has to separated from longitudinal/horizontal signals
- Control up-date time = *T*_{revolution}
- GigaHz bandwidth to process intra-bunch signals.

Mathematical Modeling and Feedback Design

- What is the best control strategy??
 - Unique robust control
 - Scheduled robust control
 - Adaptive controller
 - Non-Linear
 - Complexity: One control algorithm per sample (Diagonal) or Multi-input/Multi-output algorithms.
- The best answer...is given by the bunch dynamics, specifications, noise, signal perturbations, uncertainties, etc.
- A reduced model of the bunch dynamics is the first element to start designing a feedback control system.

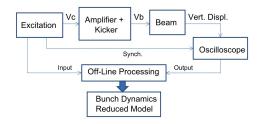
Mathematical Reduced Model on intra-bunch dynamics

 Linear Model (Set of coupled oscillators, Discrete, all the measurements at T_{rev} periodic)

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \\ y(k) &= Cx(k) + Du(k) \end{aligned}$$

- It does not capture, tune shifts due to e-clouds and synchrotron motion of particles within the bunch
- Linear Model time-variant. Synchrotron motion effects can be included $x(k+1) = Ax(k) + B(kT_{ext})u(k)$

$$\begin{aligned} f(k+1) &= Ax(k) + B(kT_{rev})u(k) \\ y(k) &= C(kT_{rev})x(k) \end{aligned}$$


- All the parameters are identified based on measurements.
- Before we drive the bean in SPS, we use multiparticle simulators to mock-up the identification set-up.

C. H. Rivetta

CM15 - LARP Meeting

Identification of Internal Bunch Dynamics: Reduced Model

- Using a random sequence (*V_C*), drive a beam through the amplifier and Kicker.
- Measure the vertical displacement
- Based on Input- Output signals, estimate the bunch reduced model.

- We are measuring including Amplifier. Kicker, Receiver model
- Bunch has to be stable
- E-clouds/TMCI: need to stabilize the bunch and then run identification

< 口 > < 同 >

Next MD plan

- To validate multiparticle simulation codes, we are planing more MDs in SPS. It will help to have good test-bench multiparticle simulators to test feedback designs.
- In this MD we want to drive the bunch using the existent SPS kicker. Currents below E-cloud threshold (stable bunch).
 - Important to test the power level and kicker gain for prototyping new kicker.
 - Test of SLAC hardware Back-end Synchronization with SPS machine Timing.
 - If it is possible to drive different sections of the bunch, test identification algorithms. -Calculate reduced dynamic model of bunch.
 - Perform bunch model identification at current levels near the instability threshold.
- Plan future MD to stabilize a few bunches or wait for a new kicker??

Analysis kicker requirements


- Kicker is one of the blocks in this feedback channel that received less attention
- No simple device, GigaHz bandwidth, High power, ...
- Requirements (??), we start some studies using multi-particle simulators.

$$\frac{d^2 y(t)}{dt^2} + \omega_{\beta F}^2 y(t) = \mathcal{K}(\boldsymbol{e}(t) - y(t)) + \Delta \mathcal{P}_T(t)$$
$$\frac{d^2 \boldsymbol{e}(t)}{dt^2} + \omega_{EC}^2 \boldsymbol{e}(t) = \mathcal{K}(y(t) - \boldsymbol{e}(t))$$

- Stabilizing feedback control: $y(t) \rightarrow 0$, then $\Delta P_T(t) \simeq Ke(t)$
- Open Loop; guess the signal kicker $_T(t)$ such y(t) = 0 very difficult
- Ideal Closed Loop: we can have an estimation of $\Delta P_T(t)$

Analysis kicker requirements

 For relative large feedback gain, y(t) -> 0 in presence of e-cloud, we can have an estimation of the signal level generated by the kicker ΔP_T(t) to reject the electron cloud perturbation.

Conclusions

- Progress in this area: Reduced Models, Models of realistic feedback for multiparticle codes, development of Identification tools, and preliminary analysis of kicker specifications.
- Real Hardware models Matlab tool to generate equivalent matrices, needs to include and test in multi-particle simulation codes.
- Reduced Models Identification We are working in the bunch dynamic model that captures the synchrotron motion of particles withing the bunch. (stable bunch, kicker effect)
- Kicker Analysis of kicker effects in closed loop operation, plan to study kicker design option

< □ > < 同 > < 三 > <

Thanks to the audience for your attention!!!,Questions?

C. H. Rivetta

CM15 - LARP Meeting

ъ November 2, 2010 20

э.

∃ → ∢

Feedback Systems

Basics

• For a single bunch, the observation of the vertical displacement of the centroid y(t) after a "local momentum kick" $M_k(t)$, follows simplified dynamics given by

$$\frac{d^2 y(t)}{dt^2} + D \frac{dy(t)}{dt} + \omega_{\beta F}^2 y(t) = M_k(t)$$

• A controller or damper defines a mapping $M_k(t) = C(y(t))$ (includes dynamics, e.g.: function of $\int y(t).dt, y(t), \frac{y(t)}{dt}...$), such that the overall vertical bunch dynamics is

$$\frac{d^2 y(t)}{dt^2} + D \frac{dy(t)}{dt} + \omega_{\beta F}^2 y(t) = G_d \frac{dy(t)}{dt}$$
$$\frac{d^2 y(t)}{dt^2} + (D - G_d) \frac{dy(t)}{dt} + \omega_{\beta F}^2 y(t) = 0$$

• Given *D*, the idea is to adjust G_d such that $\gamma = D - G_d > 0$ (stability) and the "oscillation have acceptable damping" (performance). The eigenvalues of the original equation

$$\lambda_{1,2} = \frac{-D \pm \sqrt{D^2 - \omega_{\beta F}^2}}{2} \text{ are shifted to } \lambda_{1,2} = \frac{-\gamma \pm \sqrt{\gamma^2 - \omega_{\beta F}^2}}{2}$$

C. H. Rivetta

Feedback Systems

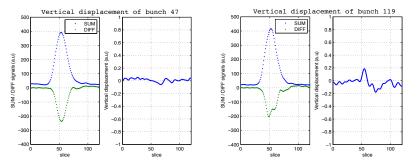
Basics

 For a multiple bunches in a ring (collective effects), we can extend the dynamic mode of the bunch centroids,

$$\frac{d^2 y_1(t)}{dt^2} + D \frac{dy_1(t)}{dt} + \omega_{\beta F}^2 y_1(t) = W_1(y_1(t), ..., y_n(t)) + M_{k1}(t)$$

.... =
$$\frac{d^2 y_n(t)}{dt^2} + D \frac{dy_n(t)}{dt} + \omega_{\beta F}^2 y_n(t) = W_n(y_1(t), ..., y_n(t)) + M_{kn}(t)$$

- Now due to W_i(y₁(t),..., y_n(t)) there is coupled motion between n bunches. The system has 2n eigenvalues, stables or inestables.
- We need to measure $y_1(t), ..., y_n(t)$ and drive the beam with $M_{k1}(t), ..., M_{kn}(t)$ on turn-by-turn basis. Those signals are finite duration (samples) and arranged in a unique measurement and driving "series channel'. receiver amplifier kicker
- A controller or damper defines a mapping $M_k(t) = C(y(t))$, where $M_k(t) = [M_{k1}(t)...M_{kn}(t)]^T$ and $y(t) = [(y_1(t)...y_n(t)]^T$ are vectors. processing channel

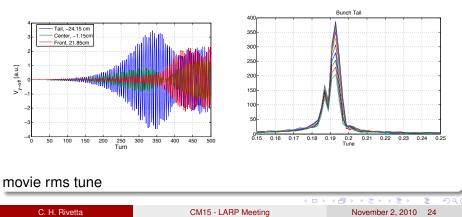

< ロ > < 同 > < 回 > < 回 > .

= 900

Introduction Feedback Control System - Generalities Multi-particle simulation codes Feedback Control System Conclusions

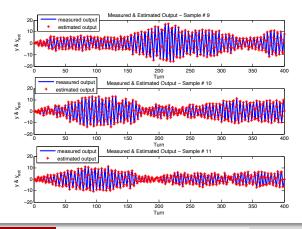
Simple Observations from SPS Studies

- SPS MDs: 2 in 2008, 1 in 2009, recently in 2010
- June 2009, SPS injection 26GeV, Charge: 1E11p/bunch, separation 25 nsec.,
- Time domain Vertical pick-up signals: SUM and DIFF Extracted Vertical displacement (Data sampled 20 ps/point)

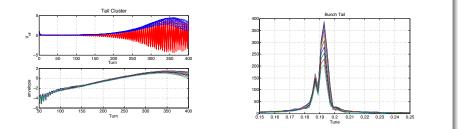

 Two batches: First 72 bunches stable, (e.g. bunch 47), second set of 72 bunches E-cloud instabilities, (e.g. bunch 119). Time span: 2.6 nsec.

movie Vert. Displacement

Simple Observations from SPS Studies

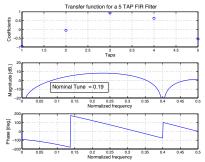

Tune shift

- Different time evolution of the vertical displacement for different sections of the bunch.
- Tune shifts within the bunch due to E-cloud, (Tune = 0.185)

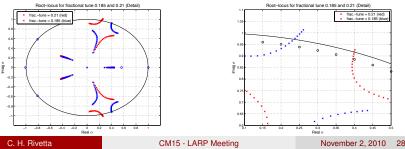

Identification of Internal Bunch Dynamics: Reduced Model

 Comparing the input random sequence to the vertical displacement slide per slide we can calculate the reduced model

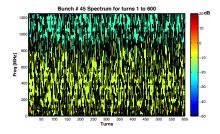
Identification of Internal Bunch Dynamics

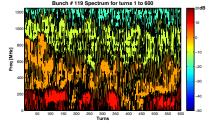

 Based on the natural response of the bunch when interacting with e-clouds we can measure the worse case dynamics model

Closed-Loop feedback around the Reduced Model



- Use the reduced model, with realistic feedback delays and design a simple FIR controller
 - Each slice has an independent controller
 - This example 5 tap filter has broad bandwidth - little separation of horizontal and vertical tunes
 - But what would it do with the beam? How can we estimate performance?


Root Locus Study - Tune shifted from 0.185 to 0.21


- We study the stability for a range of tunes
- This filter can control both systems- Maximum damping is similar in both cases
- Is this realistic case to design? We need more data from simulations and MD
- We need models for dynamics vs. beam energy, interaction with ramp

R & D areas

Hardware - Complexity? Scale? Bunch Spectrum

stack 1-bunch 47

stack 2 - bunch 47 (bunch 119)

< □ > < 同 >

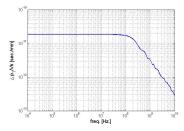
 Frequency spectrogram of bunch oscillations suggests for this case that a 4 Gsamples/sec (Nyquist limit) could be enough to measure the most unstable modes

November 2, 2010 29

R & D areas

Hardware - Complexity? Scale?

- Assuming 16 samples/bunch/Turn, 72x6 bunches/Turn, 16 Multiplications/Accumulate (MACs) operations per sample (Proc. Ch. 16 taps FIR).
 - SPS = 6*72*6*16*43Khz = 5 GigaMACs/sec
 - KEKB iGp system = 8 GigaMACs/sec, (existent)
 - Dynamic bandwidth to process 4 Gs/sec
- Amplifier Kicker: bandwidth limit about 1-2GHz, Power-Gain ??
 - Installed Kicker: Limited in bandwidth and power
 - Study option for kicker
- Receiver Pick-up
 - Installed Pick-up: Propagation modes $\sim 1.7 GHz$
 - Design new pick-up CERN interest Install 2012-2013
 - Study receiver topology noise / spurious perturbations floor


э.

< ロ > < 同 > < 回 > < 回 > .

R & D areas

Hardware - Kicker / Pick-up

• Amplifier - Kicker. Critical missing elements

Test power amplifiers, set cable plant, loads for existent kicker. Drive the bunch with the actual hardware.

- Identify the Kicker technology as an accelerated research item, Study best kicker topology for prototype.
- Kicker design/fab requires joint CERN/US plans.
- Design kicker and vacuum components for SPS fabrication and installation

MD plans

- To validate multiparticle simulation codes, we are planing more MDs in SPS. It will help to have good test-bench multiparticle simulators to test feedback designs.
- In this MD we want to drive the bunch using the existent SPS kicker. Currents below E-cloud threshold (stable bunch).
 - Important to test the power level and kicker gain for prototyping new kicker.
 - Test of SLAC hardware Back-end Synchronization with SPS machine Timing.
 - If it is possible to drive different sections of the bunch, test identification algorithms. -Calculate reduced dynamic model of bunch.
 - Perform bunch model identification at current levels near the instability threshold.
- Plan next MD to stabilize a few bunches

< 口 > < 同 >