LHC Status and Introduction to the HL-LHC

O. Brüning

2008

2008

- □ Accelerator complete
- □ Ring cold and under vacuum
- September 10th 2008
 - □ First beams around
- September 19th 2008
 - □ The incident
- 2008 2009
 - 14 months of major repairs and consolidation
 - New Quench Protection System for online monitoring and protection of all joints.
 - □ However: uncertainties about the splice quality
 - Risk of thermal runaway scenarios
 - → decision to limit beam energy to 3.5 TeV for first operation

CM15, CA, November 2010

- November 20th 2009
 - □ First beams around again
- November 29th 2009
 - □ Both beams accelerated to 1.18 TeV simultaneously
- December 8th 2009
 - □ 2x2 accelerated to 1.18 TeV
 - First collisions seen before beam lost!
- December 14th 2009
 - □ Stable 2x2 at 1.18 TeV
 - □ Collisions in all four experiments with 'safe beams' ($\approx 10^{10}$ ppb)

Limited to 2 kA in main circuits (1.18 TeV) during deployment and testing of new Quench Protection System

- □ Main goal for LHC run in 2010 & 2011: integrated luminosity of 1 fb⁻¹
 - → implies flat out operation with 100 pb⁻¹ per month in 2011
 - → implies routine operation with $L > 10^{32} \text{ cm}^{-2} \text{ sec}^{-1}$ in 2011!
- Main goal for 2010: Commissioning of peak luminosity of 10³² cm⁻² sec⁻¹
 - \rightarrow not achievable with 2 10¹⁰ bunch intensity
 - → requires ca. 800 bunches with $N_b > 8 \ 10^{10}$ ppb and $\beta^* = 3.5$ m or ca. 400 bunches with $N_b > 8 \ 10^{10}$ ppb and $\beta^* = 2$ m
 - → implies operation with stored beam energies above 30 MJ

compared to operation with ca. 2 MJ in Tevatron and

```
operations with 13 bunches of 2 10^{10} \rightarrow 170 \text{ kJ}
```

Commissioning in 2010

- Four running periods:
- 1)Single bunches with low bunch intensities
- 2)Single bunches with nominal bunch intensities
- 3)Bunch trains (150ns) with nominal bunch intensities
- 4)Bunch trains with 50 ns bunch spacing

2010

27 th Feb	First injection
28 th Feb	Both beams circulating
5 th March	Canonical two beam operation: L ~ 10 ²⁷ cm ⁻² sec ⁻¹
8 th March	Collimation setup at 450 GeV
12 th March	Ramp to 1.18 TeV
15 th - 18 th March	Technical stop – bends good for 6 kA
19 th March	Ramp to 3.5 TeV
30 th March	3.5 TeV collision under 'stable' beam conditions

LHC: First collisions at 7 TeV on 30 March 2010

LHCb Event Display

First Running Period (low bunch intensity)

Event	TeV	OEF	β*	Nb	lb	ltot	MJ	Nc	Peak luminosity	Date
1	3.5	0.2	10	2	1.00E+10	2.0E+10	0.0113	1	8.9E+26 🔨	30 March 2010
2	3.5	0.2	10	2	2.00E+10	4.0E+10	0.0226	1	3.6E+27	02 April 2010
3	3.5	0.2	2	2	2.00E+10	4.0E+10	0.0226	1	1.8E+28	10 April 2010
4	3.5	0.2	2	4	2.00E+10	8.0E+10	0.0452	2	3.6E+28	19 April 2010
5	3.5	0.2	2	6	2.00E+10	1.2E+11	0.0678	4	7.1E+28	15 May 2010
6	3.5	0.2	2	13	2.60E+10	3.4E+11	0.1910	8	2.4E+29	22 May 2010

> Seven Orders of magnitude below design

calculated

At this point, just ahead of the ICHEP, Paris, (based on collisions at 450 GeV with 1.1e11 ppb) it was decided to change the mode of operation to high bunch intensities

Intensity ramp up for nominal bunch OP

□ Intensity ramp up:

- Start with 3 x 3
 - → L ≈ 5 10²⁹ cm⁻² sec⁻¹
- Move on to 6 x 6, 8 x8, 12 x 12, 24 x 24 (1.5 MJ) over 4 weeks until end of July → L ≈ 4 10³⁰ cm⁻² sec⁻¹
- Plan for a stable running period in August under constant conditions.
- Constant $β^*$ and Xing angle.
- Experience with machine reproducibility:
 - → orbit, collimation setup, etc.

1) BPM Dependence on Intensity - Beam 1

- One nominal bunch of 1×10¹¹ slowly scraped away using a primary collimator
 - 2 fills one for low sensitivity and one for high sensitivity

1) BPM Dependence on Intensity - Beam 2

- One nominal bunch of 1×10¹¹ slowly scraped away using a primary collimator
- Sensitivity constantly changed from high to low
 - Outliers due to acquisition overlapping two sensitivity ranges
- Sensitivity ranges seen to overlap as expected at around 5×10¹⁰

Internal MPP Review – 17th June 2010

Second Running Period (High bunch Intensity

	calculated									
Event	TeV	OEF	β*	Nb	lb	ltot	MJ	Nc	Peak luminosity	Date
1	3.5	0.2	10	2	1.00E+10	2.0E+10	0.0113	1	8.9E+26	30 March 2010
2	3.5	0.2	10	2	2.00E+10	4.0E+10	0.0226	1	3.6E+27	02 April 2010
3	3.5	0.2	2	2	2.00E+10	4.0E+10	0.0226	1	1.8E+28	10 April 2010
4	3.5	0.2	2	4	2.00E+10	8.0E+10	0.0452	2	3.6E+28	19 April 2010
5	3.5	0.2	2	6	2.00E+10	1.2E+11	0.0678	4	7.1E+28	15 May 2010
6	3.5	0.2	2	13	2.60E+10	3.4E+11	0.1910	8	2.4E+29	22 May 2010
7	3.5	0.2	3.5	3	1.10E+11	3.3E+11	0.1865	2	6.1E+29	26 June 2010
8	3.5	0.2	3.5	6	1.00E+11	6.0E+11	0.3391	4	1.0E+30	02 July 2010
9	3.5	0.2	3.5	8	9.00E+10	7.2E+11	0.4069	6	1.2E+30	12 July 2010
10	3.5	0.2	3.5	13	9.00E+10	1.2E+12	0.6612	8	1.6E+30	15 July 2010
11	3.5	0.2	3.5	25	1.00E+11	2.5E+12	1.4129	16	4.1E+30	30 July 2010
12	3.5	0.2	3.5	48	1.00E+11	4.8E+12	2.7127	36	9.1E+30	19 August 2010

Maximum reached is 10.7x10³⁰ cm⁻²s⁻¹

Approaching 4pb⁻¹ (move to bunch trains)

Measured 450 GeV Aperture

Beam / plane	Limiting element	Aperture [σ]
Beam 1 H	Q6.R2	12.5
Beam 1 V	Q4.L6	13.5
Beam 2 H	Q5.R6	14.0
Beam 2 V	Q4.R6	13.0

- Predicted aperture bottlenecks in triplets (n1=7) do not exist.
- "Measured" n1 = 10 12 (on-momentum) instead design n1 = 7
- Mechanical tolerances, closed orbit and beta-beat better than specified

Global correction (incorporated), Beam 2

indeed $\approx 15\%$.

Plan for getting to 10³² before ion run

LMC 18th August.

- Parameters and Conditions
 - Nominal bunch intensity 1.1 10¹¹
 - smaller than nominal emittances: 2.5 μ m $\leftarrow \rightarrow$ 3 μ m (3.75 μ m)
 - Stick to β^* = 3.5 m in all IPs with 175 µrad crossing angle
 - Commission bunch trains
 - New setup for injection process (crossing angle)
 - Complete re-do of the whole machine protection set-up
 - Go to 150 ns bunch spacing
 - Commission faster ramp (10 A/s)

Test ramp 10 A/s

1st attempt reached 1.7TeV 2nd attempt perfect ramp up to 3.5TeV

Ramp duration reduced from 46 to 16 minutes

Third Running Period (bunch trains)

Nb	lb	MJ	Nc	Peak luminosity (design parameters)	Maximum luminosity (measured)	Beam-beam shift from measured Lumi	Date
56	1.10E+11	3.5	47	1.203E+31	2.000E+31	0.0157	23/09/2010
104	1.10E+11	6.5	93	2.381E+31	3.500E+31	0.0139	25/09/2010
152	1.10E+11	9.4	140	3.584E+31	5.000E+31	0.0132	29/09/2010
204	1.10E+11	12.7	186	4.762E+31	7.000E+31	0.0139	04/10/2010
248	1.10E+11	15.4	233	5.965E+31	1.030E+32	0.0164	14/10/2010
312	1.10E+11	19.4	295	7.552E+31	1.500E+32	0.0188	16/10/2010

Bunch Train Schedule

Collisions

Fill	# bunc h	N bunch [10 ¹¹ p]	ε _{H/V B1} @inj [μm]	ε _{H/V B2} @inj [μm]	L _{peak} [10 ³² cm ⁻² s ⁻¹]	ε _{H/V} @coll. from lumi [μ m]	Stable beams [h]	L _{int} [pb ⁻¹]	Reason for dump	^ε _{H/V} ^{@end of coast} (from Lumi scan) [μm]
1408	248	1.02	-	-	0.94	2.5	9.5	>2.4	Prog.	3.8/3.9
1410	256	1.04	1.5/1.3	1.4/1.6	1.3	1.8	0	0	BLM on MQW	-
1418	248	1.04	1.7/1.6	2.1/2.2	1.03	2.4	8.5	>2.4	PC IT.R1	-
1422	16	0.78	2.4/2.6	2.6/3.2	0.018	3.9	5.5	0.03	LBDS	-
1424	312	1.13	2.0/1.9	2.2/2.4	1.35	2.6	1	0.4	UFO LHCb BCM	-
1427	312	0.89	2.0/1.8	2.2/2.4	0.86	2.6	9.5	2.3	Prog.	3.2/3.1
1430	312	1.15	-	-	1.48	2.4	0.6	0.3	UFO Pt.4	-

Typical emittances in collision 2.5 μm

→ ca. 50% higher than nominal beam-beam parameter!!!

LHC protons 2010: mission accomplished

250 bunches with ca. 2.6 10^{13} ppb L₀ > 10^{32} cm⁻² s⁻¹ \rightarrow Emittance in collision < 3 μ m

Ele <u>V</u> iew <u>S</u> ettings <u>A</u> udio <u>V</u> ideo <u>N</u> avigation <u>H</u> elp	VLC media player File View Settings Audio Video Navigation Help								
▲ ■ ++ ++ >>>>> = ④									
14-Oct-2010 03:39:29 Fill	#: 1418 Ener	gy: 3500 GeV	I(B1): 2.62e+13	I(B2): 2.61e+13					
	ATLAS	ALICE	CMS	LHCb					
Experiment Status	PHYSICS	STANDBY	NOT_READY	PHYSICS					
Instantaneous Lumi (ub.s)^-1	101.346	0.187	101.073	93.180					
BRAN Luminosity (ub.s)^-1	103.804	0.184	97.665	81.519					
Fill Luminosity (nb)^-1	4.2		3.5	3.4					
BKGD 1	0.047	0.143	17.689	0.432					
BKGD 2	288.000	0.452	0.002	1.315					
BKGD 3	17.000	0.016	2.246	0.374					
LHCb VELO Position Gap: 58	3. 0 mm	STABLE BEAMS	ТОТЕМ	STANDBY					
Performance over the last 24 Hrs				Updated: 03:39:21					
2.5E13 2E13 1.5E13 1E13 5E12	4		/	-3000 -2000 (3) -2000 (5) -2000 (5)					
05:00 08:00	11:00 14:0	0 17:00	20:00 23:00	02:00					
- I(61) - I(62) - Energy	Lindatadı 00	22017 Reclarge and 1		Undeted 02:20:17					
00 00 00 00 00 00 00 00 00 00	03:30 03:35	3:5527 Gattsground 2 100 0 0 0 0 0 0 0 0 0 0 0 0	03:15 03:20 03:25 JUCE — CMS — LHCB	03:30 03:35					

1/11/2010 (delivering up to 2 10³² cm⁻² sec⁻¹ peak with 368)

1/11/2010 (approaching 6pb-1 per day)

1/11/2010 (approaching 50pb-1)

Observations & Events

Beam-Beam: beam-beam parameter > $3 \ 10^{-3} \rightarrow 6 \ 10^{-3}$

Vacuum effects for bunch trains above 200 bunches

Aperture limitation at injection region

Beam-Beam: Bunch by bunch

- beams dumped right after colliding (~1 minute)
- clear dependence of losses on number of H.O. collisions
- some bunches b2 lose up to 5% in the first few seconds
 - 12 out of 14 biggest losers from first 3 16-bunch injections
 - $10^{\text{th}} 11^{\text{th}} 12^{\text{th}} 13^{\text{th}}$ in the 16-bunch train

5 4 3 2 1 0 140 145 150 155 160 time [s]

IPs: 1 5 2 8 - 1 5 8 - 1 5 2 - 1 5 - 2 8 - 8 - 2

LHC status

UFOs: Unidentified Falling Objects

Beam loss monitor post-mortem

LHC Status Report 8/10/2010

Jan Uythoven

About 50% of the UFOs lead to dumps while the loss is decaying...

LHC Status Report 8/10/2010

Jan Uythoven

Excluded Totem UFOs

UFOs: INTENSITY DEPENDENCE

"UFO" Rate

The UFO rate seems to increase linearly with intensity: Extrapolating 2000 Bunches => ~ 5.2 evts/hour 60% of the events used to produce this graphic were far from threshold (Signal/Threshold < 0.2)

Signal intensity (RS05)

Signal in the BLM at maximum also scales (linearly?) with intensity: Extrapolating 2000 Bunches => ~ 0.06 Gy/s

Thresholds for cold magnets in RS05 are in the range 0.02-0.08 Gy/s

- Vacuum activity in the common beam chamber of all experiments.
- □ Local pressure bump around ± 60 m from the IP.
 - □ Uncoated segment of vacuum chamber at the warm-cold transition of inner triplets
- Pressure rise driven by the presence of both beams
 - Higher backgrounds.
 - Driven by beam and bunch intensity
 - Possibly higher order mode heating from the beam.
 - Possibly due to synchrotron light heating desorption D1/D2 and Quads
 - Possibly Electron Cloud
 - NOT due to some beam losses as nothing on BLMs
 - Same order of magnitude everywhere (towards 10⁻⁷ mbar).
 - Gets worse when beam intensity goes up
 - Improves when running at same beam intensity
 - Cleaning effect
- Valves will close if $p > 4.10^{-7}$ mbar in 2 out of 3 gauges. Still ok.

Jan Uythoven

Vacuum over fill

LHC Status Report 8/10/2010

Jan Uythoven

Solenoids between DFBX and D1 in IR1L

Injection Study with train of 24 Bunches 10/10/10 – 15:00

Start increase pressure on both lines when the number of protons in the machine is about: Beam B=1E13 Beam R=8E12

TE-VSC Group

J.M. Jimenez

Bunch Train Schedule

50ns bunch spacing operation: 30/31.10.

- 00h47: Start ramp. 109b. 50ns. ~1.1e11 p / bunch.
- 02h24: Stable beams. Fill 1459.
 - well separated trains of 12x50ns → vacuum OK
 - Lumi ~2e31.
 - Emittance ~3 um (from lumi).
 - Negative chromaticity at end of squeeze: Losses at warning level of BLM's.
 - 30-40% bunch to bunch intensity spread.
- 07h30: Adjust. End-of-fill studies.
- Big rises in pressure when moving to 24x50ns
- Pressure goes with number of batches injected

Vacuum IR1

Timeseries Chart between 2010-10-30 21:47:20.459 and 2010-10-31 06:36:50.112 (UTC_TIME)

R. Alemany

Aperture limitation: Injection losses B1

Radiation survey and X-ray (Tue 12/10) have evidenced a clear aperture restriction at the transition between the injection septa MSIB/MSIA due to a non-conformity in the mounting of the interconnection

LHC Upgrade Plans and New Initiatives in 2008

CERN New Initiatives

LHC Insertion:

→LHC IR Upgrade –Phase I project lead by Ranko Ostojic

→LHC sLHC / Phase 2 IR upgrade lead by Lyn Evans

LHC collimation:

Phase 2 collimation project lead by Ralph Assmann

LHC injector complex:

- → LINAC4 project lead by Maurizio Vretenar
- → PS2 design study lead by Michael Benedikt
- → LSPL design study lead by Roland Garoby
- → SPS upgrade study team lead by Elena Shaposhnikova

Outcome of Chamonix 2010

- Decision to consolidate all LHC splices in one go:
- \rightarrow shutdown in 2012 for splice repair
- → followed by new hardware commissioning
- → Phase 1 IR upgrade in 2013-14 would imply 2 long shutdowns in a row

→ old plan for Phase 1 IR upgrade implies triplet replacement long before end of magnet lifetime (ca.10 fb⁻¹ versus 500 fb⁻¹)
→ decision to 'delay' Phase 1 IR upgrade (merged with Phase 2)

Planning of injector complex upgrade

→ have to consolidate existing injector complex for at least 10+ years
 → decision to hold PS2 & SPL plans and to launch alternative upgrade studies: PSB energy upgrade and SPS e-cloud and TMCI remedies

New Studies and Taskforces

The Chamonix 2010 discussions led to five new task forces:

- -Planning for a long shut down in 2012 for splice consolidation
- -Long term consolidation planning for the injector complex
- -SPS upgrade task force
 - → accelerated program for SPS upgrade
- -PSB upgrade and its implications for the PS (e.g. radiation etc)
- -LHC High Luminosity project

→ investigate planning for ONE upgrade by 2018-2020

Launch of a dedicated study for doubling the beam energy in the LHC \rightarrow HE-LHC

New Project Structure at CERN

- High Luminosity LHC Projects: L. Rossi
 → prepare for operation at 5 10³⁴ cm⁻² sec⁻¹
 → prepare for integrated luminosity of 3000 fb⁻¹
 → Implementation by 2018 2020
- LHC Injector Upgrade Project: R. Garoby
 → remove bottlenecks in the PS and SPS
 → investigate options for PSB upgrade (energy)
- LHC Consolidation Project: S. Baird
 → have to consolidate existing injector complex for at least 15+ years

Linear Collider Project: Steinar Stapnes

CERN plan for coming years

Stop INJ in 2012 No shutdown in 2015 to maximize Physics

Nobody will be surprised if instalaltion of HL equipment will shift 1 year... 46

8 Sept 2010

L. Rossi - HL-LHC Design Study

Situation at CERN

- New CERN plan endorsed by special SPC and FC of end of August
- Reduction in budget is acceptable to preserve the physics plan
- LHC is even reinforced
 - New plan on Collimation in IR3 accepted (if compatible), to be confirmed in next Chamonix workshop
 - Key technologies for the upgrade are kept funded and even increased (but: we suffer lack of personnel)
 - The next big shutdown is 1 year later (2016)
 - We buy time to be really prepared to use it

General features of Design Study

- 10 M€ total cost over 4 years: July 2011-June2015
- Reimbursement by EU
 - We aim at 40% reimbursement by EU (budget details are still being sorted out)
 - CERN offers free personnel for WPs, but will be reimbursed 100% for management. Exception for fellows.
 - This setup makes it hopefully very attractive for other partners: possibility of 50% reimbursement for Universities ?
- Close collaboration with EuCard (and other programs) for technical development
 - Most of resources on personnel
 - Some hardware, especially for orphan items
- Trying to attract contributions from other labs:
 - Non EU labs can participate (but no EU funds)

HL-LHC Structure:

Tentative Work Package list:

Communication & management: L. Rossi
 Optics, Layout and Beam Physics: O. Brüning
 Magnet Design: E. Todesco
 Crab Cavity Design: E. Ciapala & E. Jensen
 IR Collimation: R. Assmann
 Machine Protection: J. Wenninger
 Machine Experiment Interface: A. Ball
 Superconducting Link: A. Ballarino

HL-LHC Work Package 2:

Tentative Task List:

1) Communication & management:

2) Optics & Layout:

- NbTi solutions with and without local CC; L*; round and flat beams; 2-in-1
- Nb₃Sn solutions with and without local CC; L^{*}; round and flat beams; 2-in-1
- Novel solutions for correction of chromatic aberrations (a la SF & PR)
- IR4 layout and solution with global CC

→ magnet parameters (aperture and length)

3) Single particle studies and tools:

- DA studies and FQ specifications
- Correction strategy and corrector specifications
 - → magnet parameters (FQ and corrector elements)

HL-LHC Work Package 2 Brainstorming

Tentative Task List:

4) Collective Effects:

- Impedance estimates for new layout (collimator and aperture dependent)
- IBS estimates for different beam configurations
 - → beam separation; optimum configuration (flat beams vs round beams)

5) Beam-Beam Effects:

- BB long range compensation schemes
- BB limit for round and flat beams and coupling tolerances for flat beams
- Head-on BB compensation schemes and options

6) Beam Parameters and Luminosity optimization:

- L reduction and leveling (CC and poor man leveling via x-ing angle)
- Evaluation of operation experience of first 2 year LHC operation
- Options for beam parameter variation for L optimization during run (e.g. Q)
 - → beam parameter set (ϵ_n , N_b , σ_s etc.)

CM15, CA, November 2010

LHC Injector Upgrade Project:

Areas for USLARP involvement:

1)Turn by turn profile monitor for PSB
 2)Space charge studies for the PSB and PS
 3)Wide bandwidth feedback system for the SPS
 4)Impedance calculations and measurements
 5)Instability studies and estimates
 6)e-cloud mitigation

Reserve Transparencies

LHC Performance Optimization

example for small emittance scheme:

Parameter	nominal	ultimate	small emittance
Ν	1.15E+11	1.70E+11	1.70E+11
n _b	2808	2808	1404
beam current	5.84E-01	8.63E-01	4.32E-01
bunch spacing [ns]	25	25	50
x-ing angle [rad]	3.00E-04	3.50E-04	5.0E-04
beam separation $[\sigma]$	7.36	8.59	15
β* [m]	0.55	0.55	0.55
ε _n [m]	3.75E-06	3.75E-06	2.50E-06
ε _L [eVs]	2.51	2.21	3.62
energy spread	1.00E-04	1.00E-04	1.24E-04
bunch length [m]	7.50E-02	7.50E-02	9.90E-02
IBS horizontal [h]	80	50	30
IBS longitudinal [h]	61	30	42
Piwinski parameter	6.77E-01	7.89E-01	1.41E+00
geom. reduction	8.28E-01	7.85E-01	4.81E-01
beam-beam / IP	3.10E-03	4.35E-03	4.00E-03
Luminosity	1 10E+34	2 10E+34	1 10E+34

Courtesy M. Ferro-Luzzi

Adam Jeff – Andrea Boccardi

Beam 2

LHC status

11/4/2010

M. Lamont

3.5 TeV: run flat out at ~100 pb⁻¹ per month

	Nb	ppb	Total Intensity	MJ	beta*	Peak Lumi	Int Lumi per month [pb ⁻¹]	
50 ns	432	7 e10	3 e13	17	2.5	7.4 e31	~63 (34)	
Pushing intensity limit	796	7 e10	5.1 e13	31	2.5	1.4 e32	~116 (63)	
		16	% nomir	nal				

Should be able to deliver around 1 fb⁻¹

CM15, CA, November 2010

Luminosity estimates

Performance Tables

Limitations are highlighted in yellow; values to be demonstrated are in italic.

LHC INJECTORS WITH LINAC2		Nominal LHC Double Batch	Expected Maximum Double Batch	Original proposal, 1997 Nominal	Original proposal, 1997 Ultimate
PSB out	ppr	1.62 x10 ¹² (1bunch/ring)	1.8 x10 ¹² (1bunch/ring)	1.05 x10 ¹² (1bunch/ring)	1.8 x10 ¹² (1bunch/ring)
(ε* ≤ 2.5 μm)		\downarrow (6 bunches, h=7)	\downarrow (6 bunches, h=7)	\downarrow (8 bunches, h=8)	\downarrow (8 bunches, h=8)
PS out, per pulse	ррр	9.72 ×10 ¹²	10.8 x10 ¹²	8.4 x10 ¹²	14.4 x10 ¹²
PS out, per bunch	ppb	1.35 x10 ¹¹ (72 bunches)	1.5 x10 ¹¹ (72 bunches)	1.0 x10 ¹¹ (84 bunches)	1.7 x10 ¹¹ (84 bunches)
(ɛ* ≤ 3 µm)		\downarrow 15% loss	\downarrow 15% loss	↓ no loss	↓ no loss
SPS out	ppb	1.15 x10 ¹¹	1.27 x10 ¹¹	1.0 x10 ¹¹	1.7 x10 ¹¹

M. Vretenar @ Chamonix 2010

	-				
LHC INJECTORS WITH LINAC4		Nominal LHC Single batch	Maximum Single batch	Maximum Double batch	Single batch + PS h=14, 12 bunches scheme
PSB out	ppr	3.25 x10 ¹² (2bunch/ring)	<mark>3.6 x10¹² (2bunch/ring)</mark>	1.8 x10 ¹² (1bunch/ring)	3.6 x10 ¹² (3bunch/ring)
(ε* ≤ 2.5 μm)		\downarrow (6 bunches, h=7)	\downarrow (6 bunches, h=7)	\downarrow (6 bunches, h=7)	\downarrow (12 bunches, h=14)
PS out , per pulse	ррр	9.72 x10 ¹²	10.8 x10 ¹²	<mark>12.3 x10¹²</mark> (scaled 1998 limit, 206ns bunches)	14.4×10^{12} (lower ΔQ in single batch)
PS out, per bunch	ppb	1.35 x10 ¹¹ (72 bunches)	1.5 x10 ¹¹ (72 bunches)	1.7 x10 ¹¹ (72 bunches)	2.0 x10 ¹¹ (72 bunches)
(ε* ≤ 3 μm)		\downarrow 15% loss	↓ <15% loss	\downarrow 20% loss	\downarrow 20% loss
SPS out	ppb	1.15 x10 ¹¹	>1.3 x10 ¹¹	1.37 x10 ¹¹	1.6 x10 ¹¹
Goal:		Nominal intensity in single batch: shorter filling time, lower losses and emittance		Potential for ultimate intensity out of PS in double batch.	Potential for > ultimate with a new PS scheme (in PSB: new recombination kicker,

growth.

double batch.

new recombination kicker, new RF gymnastics).

SPS: present achievements

E. Chaposhnicova @ Chamonix 2010

	SPS rec 450 G	ord at eV/c	LHC request 25 ns		
Parameters	25 ns	FT	nominal	ultimate	
bunch intensity/10 ¹¹	1.2	0.13	1.2	1.8	
number of bunches in SPS	288	4200	288	288	
total intensity/10 ¹³	3.5	5.3	3.5	5.2	
long. emittance [eVs]	0.7	0.8	<1.0	<1.0	
norm. H/V emitt. [µm]	3.6	8/5	3.5	3.5	

 \rightarrow SPS upgrade is necessary for intensity above nominal LHC

Chamonix 2010

Summary of LHC Intensity Limits (7 TeV)

11/4/2010

LMC: R. Assmann