
# Cryomodule Magnetic Field Measurements

#### Jackline Koech Supervisor: Darryl Orris

08/03/2010









#### **1. Cryomodule field measurements**

- Introduction
  - Motivation

Why measure the field?

- Tools & Methods
  - Measurement Program

Experimental setup

- Data, Discussion and Conclusion
- **2.** Calibrations
- **3. Printed Circuit Boards Design**

# International Linear Collider(ILC)

Will make use of Superconducting Radio Frequency Cavities.



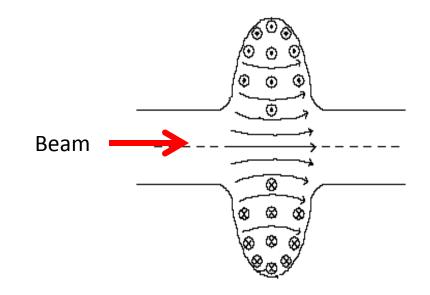
http://www.crystalinks.com/internationalinearcollider.html

# What are the Superconducting RF cavities?

•Superconductivity: Zero electrical resistance of some materials at very low temperatures.

•These cavities are made of Niobium which become superconductors at a few degrees above absolute zero.



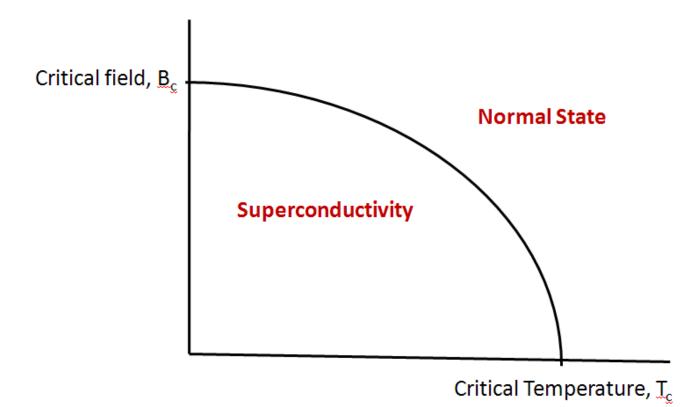

http://www.linearcollider.org/about/What-is-the-ILC/The-project



## How does it accelerate beams?

- SCRF technology is a resonant system
- A standing wave is set up in the cavity where the electric field is in the direction of the beam. Charged particles entering the cavity get accelerated.

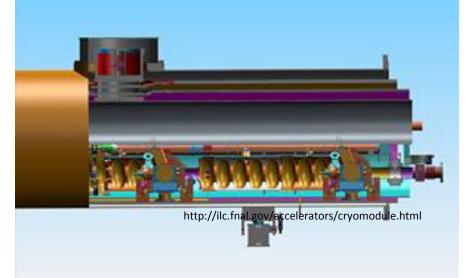





# Q ~ $10^{10} - 10^{11}$ for RF cavities

qbx6.ltu.edu

# Effect of field on the cavities


• The main two limitations of superconducting RF cavities are field emission and quenching



### Cryomodule



1.3 GHz Vacuum vessel



Vacuum vessel provides magnetic shielding which reduces the field to about 10-20uT.

> We need to measure the field inside the cryomodule to ensure that the field is within some acceptable limits.

An inside view of Cryomodule with the superconducting cavities

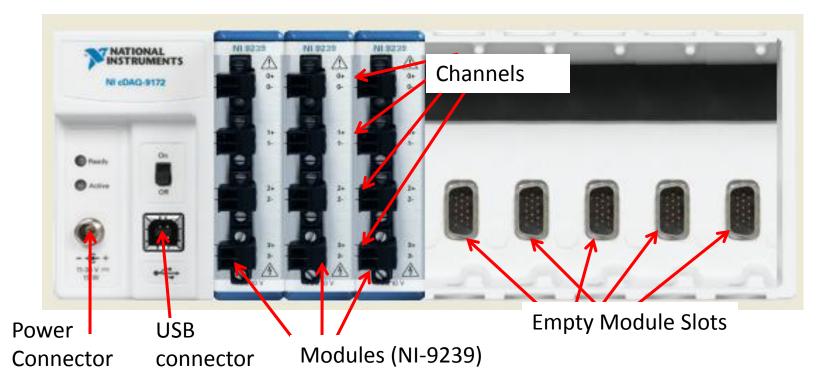
# Objectives

- Develop a LabVIEW program that will facilitate field measurements inside the cryomodule.
- Test the program and check the measurements' consistency with those taken at DESY, the German center for Particle Physics research.

# Tools

**Magnetic Sensor** 

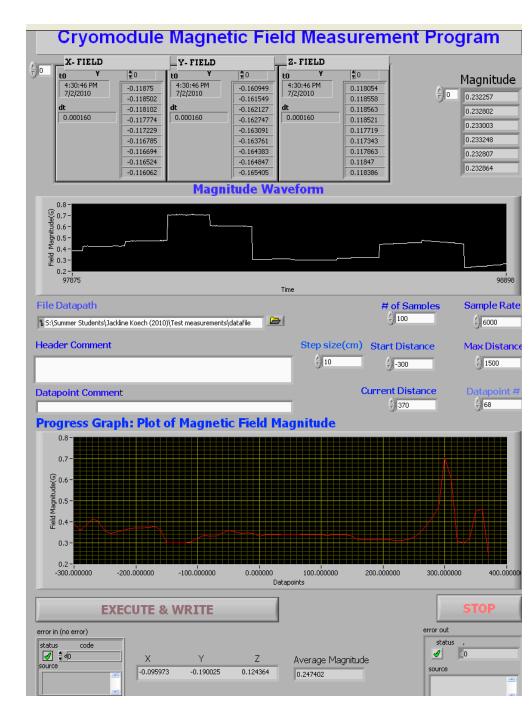



We use Bartington's threeaxis magnetometer Mag-03MC1000, attached to a Power Supply Unit, Mag-03PSU via a 10m cable.

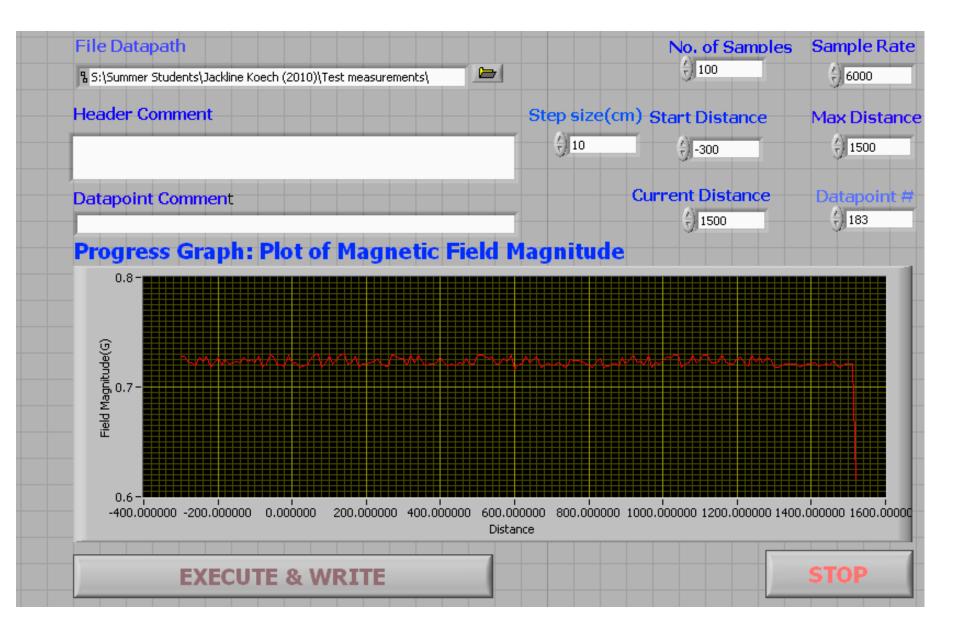
Measures the field in the X, Y and Z directions

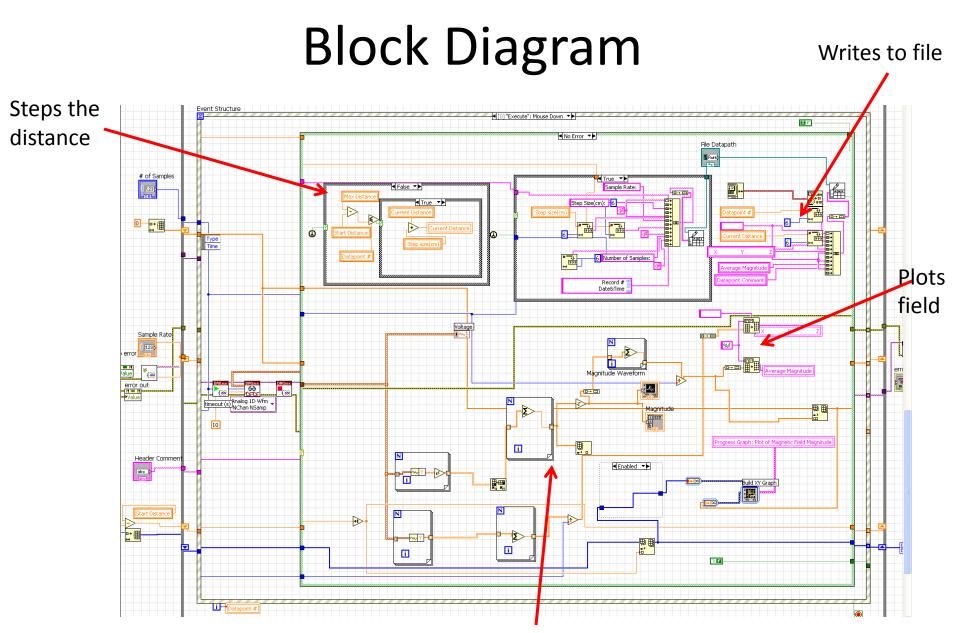


Power Supply Unit


#### NI cDAQ-9172 & NI- 9239




# We use NI's compact chassis with 9239 modules


### Field Measurement program

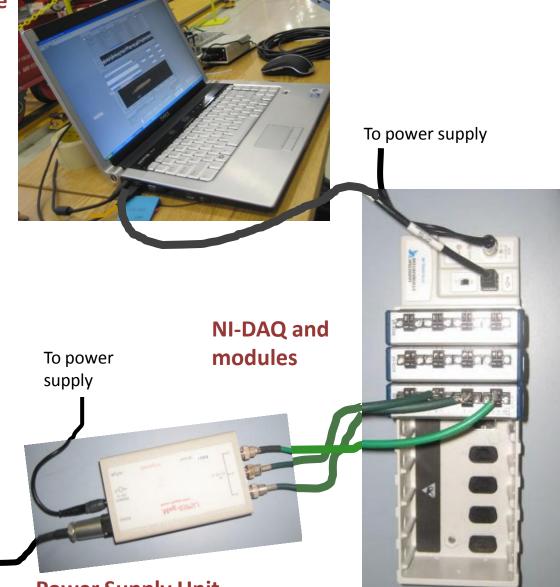
- Written in LabVIEW
- LabVIEW programs are called Virtual Instruments(VIs) and have front panels and a block diagrams



Front Panel Reads X, Y and Z fields, calculates magnitude and its average over many sample points. Plots field at the different data points as the sensor is moved along the Cryomodule Outputs a file






Calculates the field averages and magnitude

#### **Experimental Setup**



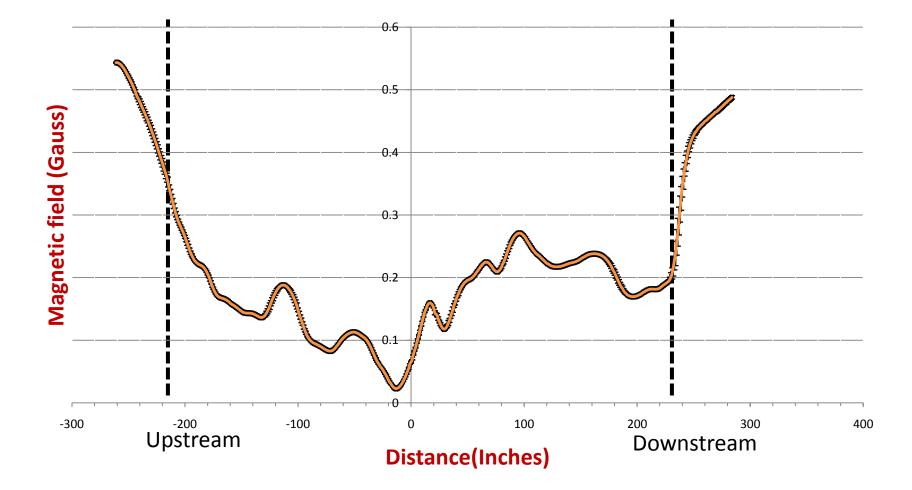


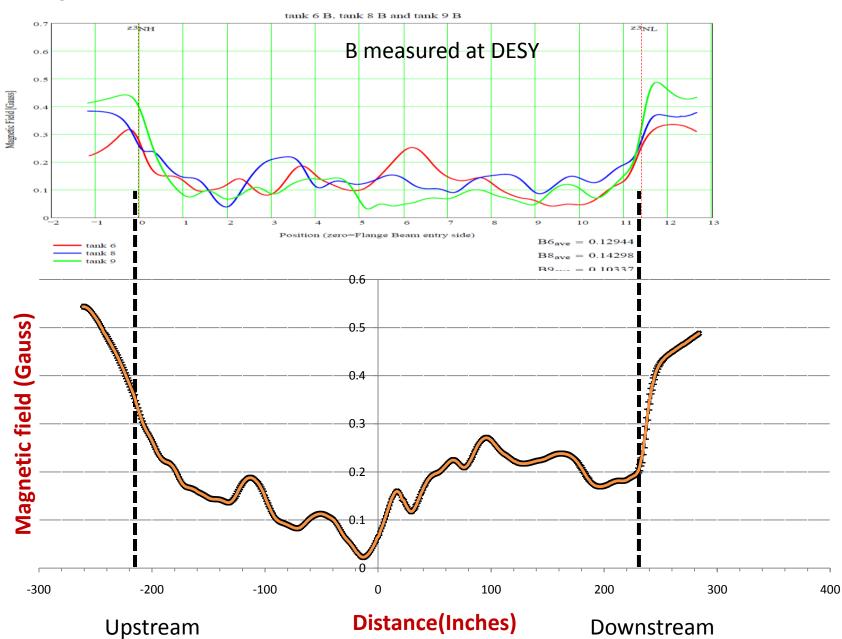
Magnetic Sensor and Cable



**Power Supply Unit** 

### Procedure


- Aluminum channel with wooden support. The Magnetometer was supported by a G-10 probe holder that slides along the channel.
- A tape was attached to the Magnetometer to measure distance



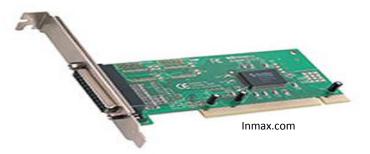

#### Sample Output File opened in Excel

| 🔀   🛃 🦃 👻 🕑 👻   🖛 eastside4 - Microsoft Excel non-commercial use (Tri |               |                       |              |              |                |          |             |             |              |         |          |      |                              |                       |
|-----------------------------------------------------------------------|---------------|-----------------------|--------------|--------------|----------------|----------|-------------|-------------|--------------|---------|----------|------|------------------------------|-----------------------|
| File Home Insert Page Layout Formulas Data Review View Add-Ins        |               |                       |              |              |                |          |             |             |              |         |          |      |                              |                       |
| C <sup>2</sup>                                                        | 🗎 🔏 Cu        | t                     | Calibai      | - 11         |                | = _      | <b>_</b> »~ | <b>.</b>    | T+           |         |          |      |                              |                       |
|                                                                       | Calibri       |                       | * 11         | • 11 • A A ■ |                | E */*    |             | 🚽 Wrap Text |              | General |          | · ·  |                              |                       |
| Pa                                                                    | ste<br>🗸 🝼 Fo | rmat Painter          | BIU          | *            | 🔕 - <u>A</u> - |          |             | •a• M       | erge & Cente | er 🕋 🖇  | \$ - %   | ,    | 00. 0. <b>→</b><br>00. ♦ 00. | Conditio<br>Formattir |
|                                                                       | Clipboa       | rd 🖬                  |              | Font         | г              | 5        | Aligr       | nment       |              | Gi.     | Num      | ber  | 5                            |                       |
|                                                                       | 05            |                       | - (=         | $f_{x}$      |                |          |             |             |              |         |          |      |                              |                       |
|                                                                       | А             | В                     | с            | D            | E              | F        | G           | н           |              | J       | 1        | К    | 1                            |                       |
| 1                                                                     |               | en from the           | center of t  | he cryomo    | dule, the p    | robe was | pulled tow  | ards the    | east flange  | of the  | e cryomo | dule | . The dis                    | tance fro             |
| 2                                                                     |               | (inches):             |              | ,            |                |          |             |             |              |         | <u> </u> |      |                              |                       |
| 3                                                                     | Sample F      | Sample Rate(Hz): 6000 |              |              |                |          |             |             |              |         |          |      |                              |                       |
| 4                                                                     | Number        | of Samples            | : 100        |              |                |          |             |             |              |         |          |      |                              |                       |
| 5                                                                     | Record #      | Date8                 | &Time        | Dist         | tance(inche    | s) Bx(   | G) By       | (G)         | Bz(G)        | Mag     | nitude(0 | 5)   | Comn                         | nents                 |
| 6                                                                     | 0             | 7/28/2010             | 3:24:04 PM   | I 0          | -0.00          | 5857     | 0.048346    | 0.037       | 7987 (       | 0.0617  | 63       |      |                              |                       |
| 7                                                                     | 1             | 7/28/2010             | 3:24:14 PM   | I 0          | -0.00          | 5848     | 0.048341    | 0.037       | 7985 (       | 0.0617  | 57       |      |                              |                       |
| 8                                                                     | 2             | 7/28/2010             | 3:24:17 PM   | I -1         | -0.00          | 5426     | 0.052627    | 0.04        | 1075         | 0.0669  | 79       |      |                              |                       |
| 9                                                                     | 3             | 7/28/2010             | 3:24:19 PM   | -2           | -0.00          | 5053     | 0.058096    | 0.04        | 5400         | 0.0739  | 04       |      |                              |                       |
| 10                                                                    | 4             | 7/28/2010             | 3:24:21 PM   | -3           | -0.00          | 5070     | 0.063402    | 0.05        | 0162         | 0.0810  | 04       |      |                              |                       |
| 11                                                                    | 5             | 7/28/2010             | 3:24:22 PM   | I -4         | -0.00          | 5560     | 0.067468    | 0.05        | 4205         | 0.0867  | 24       |      |                              |                       |
| 12                                                                    | 6             | 7/28/2010             | 3:24:23 PM   |              |                | 7474     | 0.072619    | 0.06        | 0013         | 0.0945  | 03       |      |                              |                       |
| 13                                                                    | 7             | 7/28/2010             | 3:24:24 PM   | -6           | -0.00          | 9572     | 0.076569    | 0.06        | 5072         | 0.1009  | 39       |      |                              |                       |
| 14                                                                    | 8             |                       | 3:24:30 PM   |              |                | 2833     | 0.080793    | 0.07        | 1342         | 0.1085  | 44       |      |                              |                       |
| 15                                                                    | 9             | 7/28/2010             | 3:24:32 PM   | -8           | -0.01          | 6632     | 0.084162    | 0.07        | 7434         | 0.1155  | 68       |      |                              |                       |
| 16                                                                    | 10            |                       | 0 3:24:34 PN |              | 9 -0.0         | 21540    | 0.087173    | 0.08        | 4350         | 0.1231  | 199      |      |                              |                       |
| 17                                                                    | 11            |                       | 0 3:24:35 PN |              | .0 -0.0        | 26254    | 0.089098    | 0.0         | 90524        | 0.129   | 9701     |      |                              |                       |
| 18                                                                    | 12            |                       | 0 3:24:36 PN |              | .1 -0.0        | 31331    | 0.090313    | 0.0         | 96910        | 0.136   | 5123     |      |                              |                       |
| 19                                                                    | 13            |                       | 0 3:24:38 PN |              |                | 36280    | 0.090724    |             | 02919        | 0.141   |          |      |                              |                       |
| 20                                                                    | 14            |                       | 0 3:24:39 PN |              | .3 -0.0        | 42408    | 0.090107    | 0.1         | 10294        | 0.148   | 3601     |      |                              |                       |
| 21                                                                    | 15            |                       | 0 3:24:47 PN |              |                | 47049    | 0.088604    |             | 15712        | 0.153   |          |      |                              |                       |
| 22                                                                    | 16            |                       | 0 3:24:49 PN |              |                | 51731    | 0.085837    |             | 20822        | 0.156   |          |      |                              |                       |
| 23                                                                    | 17            |                       | 0 3:24:51 PN |              |                | 55178    | 0.082603    | 0.1         | 24065        | 0.158   | 3934     |      |                              |                       |
| 24                                                                    | 18            |                       | 0 3:24:52 PN |              | .7 -0.0        | 57852    | 0.078930    | 0.1         | 25864        | 0.159   | 432      |      |                              |                       |
| 25                                                                    | 19            | 7/28/2010             | 0 3:24:53 PN | Λ -1         | .8 -0.0        | 59826    | 0.075010    | 0.1         | 26133        | 0.158   | 3478     |      |                              |                       |

### Field magnitude measured in lab



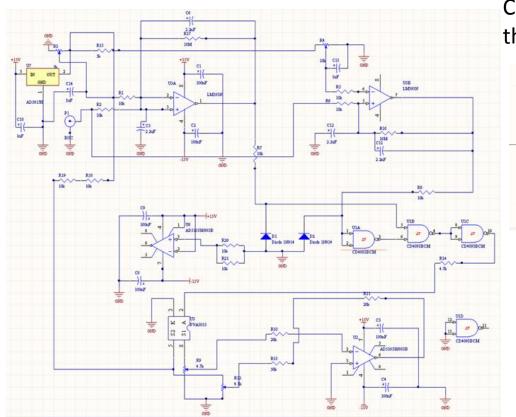



## Conclusion

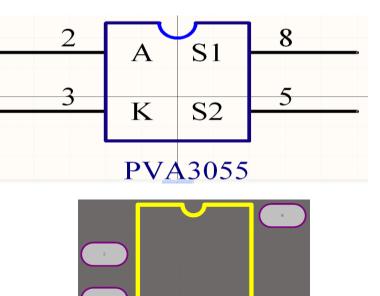
• We have been able to develop a program that facilitates efficient Magnetic field measurements inside the cryomodule.

 Our measurements are consistent with measurements done on a similar cryomodule at DESY

# Calibrations


- We did voltage/current calibration of instruments used for testing superconducting and conventional magnets, mostly PXI cards.
- LabVIEW program run on the PXI computer platform.

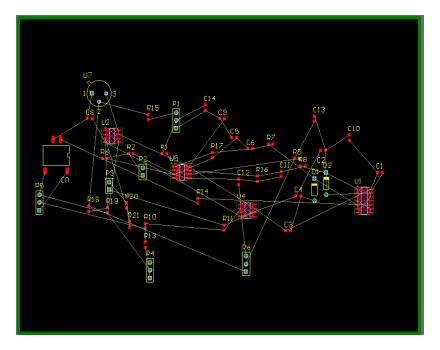



**PXI** Card

| SearchForm - INVENTORY       |                                                  |                                       |                                  |                      |                         |            |                                 | RY DATABASE      |                                         |                                                   |  |  |
|------------------------------|--------------------------------------------------|---------------------------------------|----------------------------------|----------------------|-------------------------|------------|---------------------------------|------------------|-----------------------------------------|---------------------------------------------------|--|--|
| B Home Add-Ins               |                                                  |                                       |                                  |                      |                         |            |                                 |                  |                                         |                                                   |  |  |
|                              | Cut                                              | B I U A                               |                                  | ₿ <b>∕~</b> F        | efresh<br>All * Records |            | Age 🔁 Adv                       | gle Filter Fit F | e to Switch<br>form Windows *<br>Window | Find<br>Alac Replace<br>⇒ Go To<br>Select<br>Find |  |  |
| Instrumentation and Controls |                                                  |                                       |                                  |                      |                         |            |                                 |                  |                                         |                                                   |  |  |
| Inventory Database 🎝         |                                                  |                                       |                                  |                      |                         |            |                                 |                  |                                         |                                                   |  |  |
|                              | BARCODE                                          | × N                                   | ANUFACTURER National Instruments | ~                    | STATUS                  | н          | *                               | CAL. FREQUE      | NCY  *                                  | *                                                 |  |  |
|                              | LOCATION 🗗                                       | × 1                                   | IODEL NUMBER  *                  | ¥                    | PO NUMBER               | ×          | ¥                               | CAL. SERV        | /ICE  *                                 | ~                                                 |  |  |
|                              | SPECIFIC                                         | · · · · · · · · · · · · · · · · · · · | ERIAL NUMBER                     | ~                    | FNAL BARCODE            | ×          | ¥                               | LAST CAL.D/      | ATE ×                                   | ~                                                 |  |  |
| DES                          | CRIPTION                                         | ¥                                     | INPUT RANGE                      | ~                    | LAST SCAN DATE          | ×          | ~                               | CAL. DUE D/      | ATE ×                                   | ¥                                                 |  |  |
|                              | DEVICE                                           | ¥                                     | DUTPUT RANGE  *                  | ~                    | LAST SCAN TIME          | н          | ~                               | CALIBRATION D    | DUE *                                   | *                                                 |  |  |
|                              | BARCO -                                          | LOCATION -                            | SPECIFIC -                       |                      | DEVICE                  | - MANUFA   | CTURE - M                       | ODEL NUMBE       | l → DES                                 |                                                   |  |  |
|                              | 001552                                           | Auxilliary Control Room               | Main Floor Outside               | Test In:             | strumentation           | National I | nstrumen n/a                    | а                | MXIbus                                  |                                                   |  |  |
|                              | 001845                                           | Cabinet next to Bill's desl           | PXI-Crate                        | PXI Instrumentation  |                         | National I | National Instrumen NI-PXI-6143  |                  |                                         | r 🔲                                               |  |  |
|                              | 001093                                           | CPS3                                  | Current control Rack for CPS3 E  | Test Instrumentation |                         | National I | National Instrumen NI PXI-6289  |                  |                                         | M series multifuntion c                           |  |  |
|                              | 001489                                           | East Mezzanine                        | Hallway                          | VME Part             |                         | National I | National Instrumen NI PXI-4351  |                  |                                         | n/a                                               |  |  |
|                              | 001495                                           | East Mezzanine                        | Hallway                          | Test Instrumentation |                         | National I | National Instrumen NI SCXI-1140 |                  |                                         | n/a                                               |  |  |
|                              | 001496                                           | East Mezzanine                        | Hallway                          | Test In:             | strumentation           | National I | nstrumen NI                     | SCXI-1140        | n/a                                     | n/a                                               |  |  |
|                              | 001974 Electronics Lab                           |                                       | Calibration Rack                 | PXI Instrumentation  |                         | National I | National Instrumen 6733         |                  |                                         | Analog output device                              |  |  |
|                              | 001396 Electronics Lab                           |                                       | Calibration Rack                 | Test Instrumentation |                         | National I | National Instrumen NI PXI 6143  |                  | 8 ch, 16 bit,                           | 250ks/s D                                         |  |  |
|                              | 001973 Electronics Lab                           |                                       | Calibration Rack                 | PXI Instrumentation  |                         | National I | National Instrumen NI PXI 6284  |                  |                                         | Multifunction DAQ                                 |  |  |
|                              | 001976 Electronics Lab                           |                                       | Calibration Rack                 | PXI Instrumentation  |                         | National I | National Instrumen NI PXI 6704  |                  | Analog Outp                             | Analog Output                                     |  |  |
|                              | 001975                                           | Electronics Lab                       | Calibration Rack                 | PXI Instrumentation  |                         | National I | National Instrumen NI PXI 7833R |                  | Multifunction                           | Multifunction DAQ/Rec                             |  |  |
|                              | 000730                                           | Meson Building                        | LLRF                             | VME Part             |                         | National I | National Instrumen GPIB-1014    |                  | n/a                                     | n/a                                               |  |  |
|                              | 001457                                           | Meson Building                        | LLRF                             | VME Part             |                         | National I | National Instrumen n/a          |                  | GPIB1014                                | GPIB1014                                          |  |  |
| 001458 Meson Building        |                                                  | Meson Building                        | LLRF                             | VME Part             |                         | National I | National Instrumen NI 1014      |                  | GPIB 1014                               | GPIB 1014                                         |  |  |
| Re                           | Record: H < 1 of 96 > H >> 😵 Unfiltered Search 4 |                                       |                                  |                      |                         |            |                                 |                  |                                         |                                                   |  |  |
|                              | Edit                                             | New Record Standard<br>Reports        | Custom Export to<br>Report Excel |                      |                         |            |                                 |                  |                                         |                                                   |  |  |

### Printed Circuit Board Design using Altium Designer




Creating components and associating them with a certain footprint.



Schematic of AQD variable threshold

#### **Printed Circuit Board Design**

#### Schematic >PCB layout>printing PC Boards



PCB layout



Current distribution board - Andrzej

# Acknowledgements

- Fermilab SIST committee
- Supervisor: Darryl Orris
- Mentor: Mayling Wong
- Dr James Davenport.
- Andrzej Makulski, Roger Nehring
- Technical Division employees

### References

- <u>http://www.linearcollider.org/about/What-is-</u> <u>the-ILC/The-project</u>
- <u>http://www.crystalinks.com/internationalinea</u> <u>rcollider.html</u>
- Ilan Ben-Zvi, Superconducting RF Cavities for Particle Accelerators: An Introduction, Brookhaven National Laboratory.

# Thank You! I will now take your questions.