
 Shantenu Jha, Ole Weidner, Hartmut Kaiser
 Gabrielle Allen, Steve Brandt

 http://saga.cct.lsu.edu

Bringing the Cactus Community to ExTENCI

  Intro to SAGA & Cactus

  Three other Interoperability Projects
•  EGEE-TG[-NAREGI]

•  “ONE PERSONS’ TOOL IS ANOTHER PERSONS’ APPLICATION”
•  NAREGI-TG
•  TG-DEISA

  Three Cactus Application Scenarios
•  Ensembles of Cactus Simulations
•  Real-time Spawning
•  Multi-Physics Simulations

  Plan for ExTENCI:
•  A Cactus GateWay is under development.
•  SAGA BigJob will be made to work with TG + OSG
•  Integrate SAGA BigJob Interface into GW

SAGA: In a nutshell

  There exists a lack of programmatic approaches that:
•  Provide general-purpose, basic &common grid functionality for

applications and thus hide underlying complexity, varying
semantics..

•  The building blocks upon which to construct “consistent” higher-
levels of functionality and abstractions

•  Meets the need for a Broad Spectrum of Application:

•  Simple scripts, Gateways, Smart Applications and Production
Grade Tooling, Workflow…

  Simple, integrated, stable, uniform and high-level interface
•  Simple and Stable: 80:20 restricted scope and Standard
•  Integrated: Similar semantics & style across

•  Uniform: Same interface for different distributed systems

Understanding Distributed Applications
IDEAS: First Principles Development Objectives

  Interoperability: Ability to work across multiple distributed
resources

  Distributed Scale-Out: The ability to utilize multiple distributed
resources concurrently

  Extensibility: Support new patterns/abstractions, different
programming systems, functionality & Infrastructure

  Adaptivity: Response to fluctuations in dynamic resource and
availability of dynamic data

  Simplicity: Accommodate above distributed concerns at
different levels easily…

 Challenge: How to develop DA effectively and efficiently with
the above as first-class objectives?

SAGA: Basics

SAGA/CREAM Python Example

SAGA: Architecture

Abstractions for Dynamic Execution (1)
Container Task

Abstractions for Dynamic Execution (2)
SAGA Pilot-Job (BigJob)

Cactus: Computational Framework

  Cactus is a modular, portable,
manageable environment for
parallel, high-performance
simulation

•  Develop modules
(components) based upon
their expertise

•  No knowledge of the
internals or operation of the
other modules

•  Thorns = Components

  Thorns: chkpoint & restart,
remote steering interface..

Cactus: Flesh and Thorns

Core “Flesh”

Plug-In “Thorns”
(modules)

Cactus Arch: Flesh and Thorns

Cactus Flesh:

  Thorn manager; scheduling
of routines of a thorn; data
passing between thorns..

  Acts as utility/service library
which thorns call for info or
to request some action

  Contains abstracted APIs

•  Parallel operations, I/O,
checkpointing...

  All actual functionality in
provided by thorns

Cactus Thorns:

  Separate libraries

encapsulating some specific
functionality

  Different thorns can provide

the same functionality;

interchangable

  Can be written in any

language (C, C++, F77..)

Cactus Abstractions:

Thorns-Arrangements-Toolkit

 Thorns are grouped into
arrangements may:
•  have related functionality

•  contain everything needed for
one problem

 A collection of
arrangements, a toolkit
e.g.
•  Cactus Computational TK

•  Cactus CFD & Relativity

•  Cactus Coastal Modelling...

CactusBas
e

CactusPUGH

CactusPUGHIO CactusElliptic

+...

Cactus Computational Toolkit

Master

Agents
scheduling

Heterogeneous
resources
allocation (Ganga +
Ganga/SAGA)

Lattice-QCD Applications on
heterogeneous resources

Ganga/gLite

Ganga/SAGA (to TeraGrid)

Ganga/SAGA (to *)

Payload distribution

Application-
aware (and
resource-aware)
scheduling

Federating resources! EGEE Conference (Apr’10)

(Not in this demo: cloud
resources, additional
Grid infrastructures…)

gLite CREAM SAGA Adaptor

  SAGA provides a prototype job adaptor to access gLite
CREAM CEs

  Implemented with the CREAM C++ API

  Currently provides the following features:
•  job description (saga-jd to JDL mapping)

•  job control (run, submit, suspend, cancel, etc...)

•  listing of jobs associated with a CE

•  re-connection to running jobs

•  Encapsulates (hides) proxy delegation

 The adaptor code is available via SVN:
https://svn.cct.lsu.edu/repos/saga-adaptors/glite/

DIANE INTEGRATION

Diane without SAGA Diane with SAGA

DIANE is an execution manager with support for pilot-jobs + worker agents
(IDEAS Redux)

RENKEI Project Aims

SAGA-Engine

gLite NAREGI SRB
iRODS

Adpt Adpt Adpt

C++ Interface
Python Binding

Service & Applications Svc Apps Apps

Cloud LRMS
LSF/PBS/SGE/…

Middleware-independent service & application

RNS
Yet Another FC

service based on
OGF standard

SAGA adaptors

SAGA framework

This activity is funded by MEXT as a part of RENKEI project which develops
seamless linkage of resources in the Grids and the local one for e-Science.

KEK

Osaka Univ.
Tsukuba Univ.

HEP
Library

SAGA

NAREGI-TG: Practical Examples

•  Grid environment
–  MW: NAREGI v1.1 released in
–  VO scale: KEK, NAO, HIT, and NII

•  SAGA adaptors:
–  NAREGI adaptor for job completed
–  Torque adaptor completed

•  Demonstration in testbed
–  Particle therapy simulation based on Geant4

as the 1st practical example
–  Resource scale

•  3 sites: KEK, NAO, HIT
•  CPU: 10 cores
•  OS: CentOS 5.2 x86_64
•  Memory: 2 GB each

More applica+on‐wise development in 2010

ExTENCI: Cactus Application
Scenarios

  Problem size varies – determinant of Infrastructure used
•  TG, OSG or either..

  MPI-based applications have a very complex SW
environment that they need to worry about

  Application Scenarios/Usage Modes
•  1. Ensemble of Cactus Simulations

•  NumRel, EnKF (Petroleum Eng)

•  2. Multiphysics Code

•  GR-MHD, CFD-MD

•  3. Spawning Simulations

•  Realtime ‘outsourcing’ from BlueWaters/Ranger to
specialised architectures or less powerful resources

CFD Domain 

MD Domain 

Overlapping  
Zone 

External Force

Buffer

Inform CFD to MD

Buffer

Inform MD to CFD

  Structure of Multi-physics Execution Framework

Multi-physics Execution Framework

Characterizing Reservoirs:
Permeability and Porosity

Porosity: Measure of
capacity (buckets)

Permeability: Measure of flow
(pipes)

The Computation Problem

Computational Workload

•  Ideally, an infinitely large ensemble would give infinitesimally small data
assimilation errors.
•  In practice, an ensemble of 100~200 members is common

•  For 100 ensemble members:
•  Each ensemble member (i.e. simulation) is a full 3D simulation, with

anywhere from thousands to millions of grid cells
•  1 million grid cell simulation, running on a single Ranger node for one

forecast stage, requires roughly 2.5 hours and covers 300 time
iterations

•  An ensemble of 100 such simulations, running for a total
(15 matching+15 forecast+15 sequestration simulation years)*12
(month in a year) *2.5 (wall clock hours per simulation month)*16
(cores per node) * 100 (ensemble members) or 2,160,000 SUs on
Ranger

•  Tradeoffs and Improvements are possible and obviously necessary:
•  faster simulator, reduced wait time, reduced failure time, improved

convergence and so on

BigJob: Infrastructure Independent Pilot-Job

BigJob: Preserving Glide-in
Semantics and Interface

SAGA Pilot-Jobs: What is different?

  Pilot-Jobs: Decouple Resource Allocation from Resource-Workload
binding

  Pilot-Jobs are/have been typically used for:
•  Enhancing resource utilisation
•  Lowering wait time for multiple jobs (better predictibility)
•  Facilitate high-throughput simulations
•  Basis for Application-level Scheduling Resource binding

  Two unique aspects about the SAGA-based Pilot-Job:
•  Pilot-Jobs have not been used for Science Driven Objectives:

•  First demonstration of supporting multi-physics simulations
•  Infrastructure Independent

•  Falkon, Condor Glide-in, Ganga-Diane (EGEE/EGI), DIRAC/WMS, PANDA
•  Frameworks based upon PJs (pull model) for specific PGI/back-end
•  Do not support MPI

  SAGA-based Pilot-Job form the basis:
•  For autonomic scheduling and resource selection decisions
•  Advanced run-time frameworks for load-balancing and fault-tolerance

Job Overlay proposed Workplan

  Year 1: Development:
•  SAGA Interface – Condor Backend

•  SAGA BigJob Interface – Glide-in Integration

  Year 1: Validation
•  Command line SAGA-Bigjob Interface

•  Concurrent TG + OSG with Cactus application(s)

  Year 2: Development
•  Integration with Cactus Gateway

  Year 2: Validation and Extensibility
•  Scalability etc

 Shantenu Jha

 CERN Computing Seminar, 08 Jan, 2010

 http://saga.cct.lsu.edu

A Fresh Perspective on Distributed Scientific
Applications and Cyberinfrastructure

