Calorimetry Lecture 3: Using Calorimeter Information

Simulated 130 GeV Higgs decaying to two photons

Higgs signal

Events / 500 MeV for 10^5 pb-1

Jane Nachtman
University of Iowa
CERN/Fermilab
summer school
August 19, 2010

Thanks to Beate Heinemann, Chris Tully, Joanna Weng, ICHEP speakers!
Topics in Lecture 3

- Using calorimeter information
 - Calibration
 - Complementarity of tracking and calorimetry

- Reconstruction of jets
 - Algorithms
 - Jet Energy Corrections
Calibration and Linearity

- Goal: uniform and known response to a given calorimeter signal
- For example, signal (charge) from detector is in pC, digitized to ADC counts
 - want linear response
 - channel-to-channel differences: leakage, upstream material, electronics
- Calibrations:
 - Relative calibration normalizes the response between all channels
 - Absolute calibration translates it to energy units (from ADC counts)
- How-to: testbeam, electronics calibration, in-situ, simulation
To get to physics, first must calibrate

- **Component calibration**
 - For example, all PMT’s are tested standalone

- **Testbeam** – operate detector (or part of) in a known-energy, known-species beam
 - In addition to R&D for new detectors, provide a testbench for the final modules of the calorimeter

- **In-situ calibration**
 - Pulse detector with known energy, measure response
 - Cosmic muons, single particles

- **Physics object calibration**
 - “tag and probe”, dijet balance, photon+jet balance, W in top events
Component testing and calibration

- Example – PMT’s for CMS HCAL (HF)
 - Test station – dark box, laser input
 - Individual testing, relative calibration
 - PMT’s characterized, data put into database for later calibration input:
 - Double-pulse linearity,
 - Gain vs HV
 - Single photoelectron spectrum
 - X-Y scan (spatial uniformity)
 - Lifetime, pulse width, rise time
 - Transit time and spread
 - Anode dark current
 - Relative gain coupled with cathode sensitivity
 - Pulse linearity
 - Quality control decision

- All (or as many as possible) components of detector are calibrated long before they are integrated into detector

Pulse width for 1550 PMT’s
In-situ Detector/Electronics Calibration

- Example: inject known-energy pulse (e.g., from radioactive source or laser), then normalize readout of all channels.
- Example: Atlas and CMS -- similar methods:

![Atlas Source Path](image)

Response by location
Calibration with Muons

- Use muons from cosmic rays, testbeam, or physics events
 - Will give MIP response in calorimeter cell
 - Equalize channel-to-channel response

- CDF:
 - select muons from J/ψ and W
 - peak in HAD calo: ≈2 GeV (in CDF)
- Check time stability
In Situ Calorimeter Calibration: EM Energy

- **MIP peak:**
 - CDF → 300 MeV

- **Z→ee peak:**
 - Set absolute EM scale in central and endcap

- **E/p for electrons**
 - After having calibrated p and material, see response in E

![Graph showing MIP peak at 300 MeV and Z→ee peak]
Single Particle Response Simulation

- Single particle response:
 - Measure with test beam
 - In situ:
 - Select “isolated” tracks and measure energy in tower behind them
 - Tune simulation to describe E/\rho \text{ distributions at each } \rho \text{ (use } \pi/\rho/K \text{ average mixture in MC)}
Single Particle Response Simulation

- **MC models**
 - Hadron response at low p_T (in situ data) and high p_T (test beam data)
 - Electron response

Typical jet composition:
- 60% charged particles
- 10% protons
- 90% pions
- 30% neutral pions ($\rightarrow \gamma\gamma$) (EM response)
- 10% other (neutrons, ...)

CDF electrons

In-situ

Test beam
CMS ECAL calibration

- Startup calibration based on 10 years of test beam and cosmic ray pre-calibration, π^0 calibration
- Precision of startup calibration
 - ECAL Barrel 0.5 – 2.2%
 → 1.2% in central region
 - ECAL Endcap 5%
 - Target with 10/pb: 0.5% EB, 1-2% in EE
- Calibration validated by observation of π^0 and $\eta \rightarrow \gamma\gamma$
Single-particle response in CMS

- Compare response of isolated tracks with low ECAL energy in MinBias events with single pions from Monte Carlo

Mean response in Data and MC agree within 2-3% in barrel region. In endcap, simulation is lower than data (~4%)
Jets from Collisions

- QCD interactions \rightarrow Jets
- Types of Jets
 - Parton level – quarks/gluons from initial collision
 - Hadron level – fragmentation, decay, hadronization produce particles
 - Experimental – what we see in the calorimeter, and how we interpret it
- Goal – take detector information, reconstruct parton level physics
Jet Algorithms

- Procedure to turn recorded detector info into jets
 - Or, looking at it from the other way, turn partons into jets

- Constraints:
 - Infrared and collinear safe (see next slide)
 - Invariant under boost (important for hadron colliders)
 - Independent of level (parton, hadron, calorimeter) and detector
 - Easy to implement and use (computer resources), calibrate
Technical terms

- Infrared safe – same jets even if one of the partons emits a soft gluon

- Collinear safe – same jets even if outgoing partons split

Graphics from Kerstin Perez, ISSP 2009
Jet Algorithms used at Hadron Colliders

- Choice of jet algorithms is an involved topic – theorists and experimentalists have been working together for years to find the perfect scheme
 - True to parton-level
 - True to experimental (detector) level
 - Taking into account detector effects, pileup, etc.

- There are many possible algorithms to choose from – we won’t cover them all
 - Here are examples from CMS: Anti-kT, SISCone and kT jet algorithms:
 - Then, generator jets, calorimeter jets, calorimeter+track, and particle-flow jets for these jet algorithms
Cone Algorithms

- Cone (traditional)
 - clusters nearby in angular space
 - Problem: seeded – introduces bias especially with pileup
 - Problem: needs merging/overlap scheme, which every experiment implements differently
 -> Difficult to compare, feedback to theorists

- If you don’t seed the jets, takes $N 2^N$ time to find jets among N particles (“unseeded”)
 - unusable at hadron level (think of “simple” event with 100 particles…)
 - reduce to $N^2 \ln(N)$ time – SISCones algorithm
Clusters nearby in momentum space

Based on JADE or Durham algorithm -- exclusive iterative pairwise clustering scheme

- JADE algorithm uses test variable y_{ij}, and a combination procedure.
- Test if objects i and j should be combined according to whether $y_{ij} < y_{cut}$.
- Also, consider next pair to combine (smallest value of y_{ij}).
- Original JADE $y_{ij} = M^2_{ij}/Q^2$ where Q is the hard scale (i.e. the centre-of-mass in e^+e^- annihilation) and $M^2_{ij} = 2E_iE_j(1 - \cos \theta_{ij})$, (invariant mass-squared)
- Repeated until no objects can be combined further

- Problem with JADE – not IR, collinear safe

- Durham mod -- consists of replacing M^2_{ij} in test variable by k^2_{Tij},
 - $k^2_{Tij} = 2\min\{E_i, E_j\}^2(1 - \cos \theta_{ij})$ -- relative transverse momentum-squared of i and j.

18
kT and anti-kT

- **Advantages of kT**
 - Jet identification is unique – no merge/split stage

- **Disadvantage of kT**
 - Resulting jets are more amorphous, energy calibration difficult (subtraction for UE?), and analysis can be very computer intensive (time grows like N^3)

- **Anti-kT**
 - Like kT, only uses $1/p_T$ as the distance parameter
 - Improves performance with pileup
Testing Jet Definitions

- See this very nice webpage http://www.lpthe.jussieu.fr/~salam/jet-quality/
 - You choose two jet algorithms, set the parameters, and it compares dijet mass distributions with your conditions

Your input – twice for comparison
Example: compare k_T to anti-k_T
More on jet algorithms

- Algorithms often designed from parton point of view
- From the detector point of view
 - What information goes into a jet?
 - Calorimeter, tracking
 - “Energy flow”
 - Jet corrections, systematics
 - Integration into experimental software.
For Example, CMS Jets

- CMS has chosen the anti-kT algorithm, with \(R=0.5 \), as the default. Then, 4 types of jets reconstructed:

 1. **Calorimeter Jets**
 - Jets clustered from ECAL and HCAL deposits (Calo Towers)
 - Accordingly:
 - Calo MET

 2. **Jet-Plus-Track Jets (JPT)**
 - Subtract average calorimeter response from CaloJet and replace it with the track measurement
 - Accordingly:
 - Tc MET

 3. **Particle Flow Jets (PF)**
 - Cluster Particle Flow objects: Unique list of calibrated particles “a la Generator Level”
 - Accordingly:
 - PF MET

 4. **Track Jets**
 - Reconstructed from tracks of charged particles, independent from calorimetric jet measurements

From Joanna Weng
Particle Flow Jets

- Combines info from all subdetectors to produce particles
 - Charged hadrons – from tracks
 - Photons, neutral hadrons from ECAL, HCAL energy
 - Clusters with no tracks
 - Neutral particle overlapping with charged particles – subtract charged pt from cluster, remaining is neutral particle

- Jets from resulting particles – charged hadrons and γ are 90% of jet energy
Jet Energy Scale

- Determine the energy of the partons produced in the hard scattering process
- Corrections needed for:
 - Detector effects:
 - Non-linearity of calorimeter
 - Response to hadrons
 - Poorly-instrumented or non-functional regions
 - Physics effects:
 - Initial and final state radiation
 - Hadronization
 - Underlying event
 - Parton flavor
- Need corrections for data and MC, validate in both
Jet Corrections

- Use CMS as an example, also show others
 - CMS uses factorized approach

apply Jet Corrections as:

\[\text{E}_{\text{corrected}} = (\text{E}_{\text{uncorrected}} - \text{E}_{\text{offset}}) \times C_{\text{rel}}(\eta, p''_T) \times C_{\text{abs}}(p'_T) \]

Where \(p''_T \) is the jet \(p_T \) corrected for offset, and \(p'_T \) is corrected for offset and \(\eta \) dependence (Relative corr).
Offset correction

- Measure noise with Zero Bias trigger, with Minimum Bias trigger vetoed (MinBias requires coincidence in Beam Scintillating counters, indicating pp interaction)
- Measure pileup – select MinBias events in early data (most events 0,1 int.)
- E_{offset} -- average calorimeter energy summed in a cone of radius $R=0.5$ at a given η -- Offset from noise is below 400 MeV in energy
- Offset from one pile-up event: Up to 7 GeV in energy
- Probability of pile-up in 2010 data typically \sim50%
- Correction is small -- not yet being applied on CMS jets
Relative Correction from Dijet pT balance

- Require at least 2 jets, one in central region (Tag)
- $\Delta\phi > 2.7$
- Veto 3rd jet ($p_T^{3rd}/p_T^{dijet} < 0.2$)
- Measure Balance variable B in bins of $p_T(dijet)$ and η
- $\langle B \rangle$ in each bin is used to construct r
 - Measure of relative response
Relative response in η

- Same dijet balance is applied to simulation
- Good agreement Data/MC for $|\eta|<2$
- Calorimeter transition
 - Barrel to endcap at $|\eta|=1.3$
 - Endcap to forward at $|\eta|=3$
JPT and PF jets – rely on tracking with calorimetry – response reflects tracking detector coverage as well as calorimeter

⇒ Steep falloff in track efficiency and resolution for $|\eta|>2$, none for $|\eta|>2.5$
Relative JEC : Data/MC

- Good agreement up to $|\eta| = 2$
- Relative response in data ~10% higher compared to simulation for $|\eta| > 2$

$=>$ Data/MC close to unity after the residual correction
$=>$ Data/MC deviations are covered by conservative η-dependent systematic uncertainty of $\pm 2\% \times |\eta|$
Absolute Jet Energy Correction at CMS

- Goal – want calorimeter energy response to a particle jet to be 1 and independent of pT
 - Absolute Jet Energy Correction
- When combined with offset and relative corrections, this is all that is needed for most analyses
- Use photon+jet events
 - γ+jet balance
 - MPF
- Start with isolated photon, pt>15 GeV, in barrel region (|η|<1.3), + 1 barrel jet
Absolute Correction from Photon + jet

- pT balance in back-to-back γ+jet events

 - γ is the reference, test response p_T/p_T^γ

- Compare data, simulation to true from MC
- Bias due to soft veto on 2nd jet
- D0 – developed MPF method
- Missing ET Projection Fraction – uses MET to measure the balance, less sensitive to QCD radiation
Jet Response from MPF in γ+jet

- **Basics of MPF (Missing Momentum Fraction; developed at D0)**
 - Ideally: $\vec{p}_T^\gamma + \vec{p}_T^{\text{recoil}} = 0$

- Add in the detector: $R_\gamma \vec{p}_T^\gamma + R_{\text{recoil}} \vec{p}_T^{\text{recoil}} = -\vec{E}_T^{\text{miss}}$

- Solving: $R_{\text{recoil}} / R_\gamma = 1 + \frac{\vec{E}_T^{\text{miss}} \cdot \vec{p}_T^\gamma}{|\vec{p}_T^\gamma|^2} \equiv R_{\text{MPF}}$

 - R_{MPF} is assigned as the response of the recoil jet

- **Advantage of MPF: Low sensitivity to extra radiation**
 - Smaller error bars: Widths of distributions are narrower \rightarrow fewer fluctuations from the impact of extra radiation
 - Smaller bias wrt MC-truth than $p_T^{\text{jet}} / p_T^\gamma$ for current very loose cuts on extra radiation
 - Helps to fully exploit the accuracy of PF method

- **MPF method demonstrates the accuracy of JES for different types of jets more clearly than γ-jet balancing method does**
MPF at CMS

\[\gamma + \text{jet} \rightarrow \text{MPF} \]

Graphs:

- Response vs \(p_T^\gamma \) (PF Jet)
- Distributions of "response sensitive" variable \(R_{\text{MPF}} \) vs \(p_T^\gamma \) (PF Jet)

Equations:

- \(\sqrt{s} = 7 \text{ TeV}, L = 67 \text{ nb}^{-1} \)

Other Data:

- CMS Preliminary 2010
- JME-10-003

Fits:

- Photon \(p_T \) [GeV/c]:
 - \(\text{FIT: } 0.926 \pm 0.017 \)
 - \(\text{FIT: } 0.992 \pm 0.010 \)
Absolute Correction Factors

- Absolute jet energy correction factors C_{abs} derived from simulation for CaloJets, PF Jets, JPT jets, at 7 TeV, as a function of corrected jet p_T

Note large correction factors at low p_T for CaloJets – due to non-compensation of CMS calorimeters
Correcting Simulated Jets

- Derive corrections for Monte Carlo jets – match reconstructed jets to MC-generator level jets
- In CMS, first three levels are put together in one correction (offset, relative, absolute)

![Jet Energy Correction Factor Graphs](image-url)
Jet Corrections/Calibrations from Tevatron

- Mature Tevatron experiments have sophisticated jet correction algorithms
 - Use some of the same that I showed for CMS
- I will show some examples
Multiple Interactions (MI) at the Tevatron

- Need to know how many interactions there were:
 - # of z-vertices ~ # of interactions
- Throw random cones in Minimum Bias events
 - Determine average E_T per cone, e.g. CDF: 1 GeV for R=0.7
Relative Corrections

- Mapping out cracks and response of calorimeter
- Central at ~1 by definition
- D0:
 - Response similar in central and forward
 - Two rather large cracks
- CDF:
 - Response of forward better than of central
 - Three smaller cracks
- Difficulties:
 - depends on E_T
 - Can be different for data and MC
Calibration Peaks from W’s and Z’s

- Would like to use W,Z for calibration – same mass scale as Higgs
- Difficult to see inclusive decays of W’s and Z’s to jets
 - Small signal on huge background
- Two best opportunities:
 - W in top quark decays
 - Z in bb decay mode
Jet Energy Scale Uncertainties

- Uncertainty on Jet Energy Scale determines how well you can measure mass (of W, H, new resonance, etc) – extremely important to reduce, and understand
- CDF and DØ achieve similar uncertainties
- CMS – 10% based on Monte Carlo studies – initial data validates that this is conservative → Will improve with more data
Summary

- I’ve tried to show aspects of calibration of calorimeters at many levels
 - detector components
 - Testbeam, in-situ
 - Single-particle
 - Physics objects

- Using calorimeter information
 - Jet construction algorithms

- Corrections at the physics level
 - It comes back to how the detector was designed and built
 - Important to physics results!
Thanks for your attention and participation!!
Enjoy the rest of the summer school!!
Extra slides
Backup: Anti K_T

\[d_{ij} = \min \left(\frac{k_{T,i}^{-2}, k_{T,j}^{-2}}{R_i^2, R_j^2} \right) \frac{\Delta R_{ij}^2}{R^2} \]

\[\Delta R_{i,j}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \]

- New development in the jet clustering theory.
- Tends to cluster the energy around the hardest particles.
 - essentially behaves like a cone algorithm giving perfectly round jet areas
- Belongs to the “k_T” family.
 - merging of 4-vector pairs based on transverse momentum weighted distance in y-\(\phi\) plane.
 - the clustering terminates when the weighted distance between particles is greater than a specific value \(R\) (resolution parameter).
 - the quantity \(R\) is of the order of unity.
- infrared and collinear safe (suitable for theory calculations).
Multiple pp Interactions

- Overlapping interactions can overlap the jet
- Number of extra interactions depends on luminosity
 - LHC:
 - Low lumi (L=1x10^{33} \text{ cm}^{-2}\text{s}^{-1}): \langle N \rangle = 2.3
 - High lumi (L=1x10^{34} \text{ cm}^{-2}\text{s}^{-1}): \langle N \rangle = 23
 - Tevatron:
 - L=2x10^{32} \text{ cm}^{-2}\text{s}^{-1}: \langle N \rangle = 6

Offset depending on number of interactions
In-situ Measurement of JES

- Additionally, use $W \rightarrow jj$ mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty.

2D fit of the invariant mass of the non-b-jets and the top mass:

$$\text{JES} \propto M(jj) - 80.4 \text{ GeV}/c^2$$

Measurement of JES scales directly with data statistics.
W → jj Calibration in Top Events

- **Fit for ratio of JES in data to JES in MC**
 - CDF (1 fb⁻¹): $\delta_{\text{JES}} = 0.99 \pm 0.02$
 - DØ (0.3 fb⁻¹): $\delta_{\text{JES}} = 0.99 \pm 0.03$

- **Constrain JES to 2% using 166 events**

At LHC will have 45,000 top events/month!
Streamlined Seedless Algorithm

- Data in form of 4 vectors in (η, φ)

- Lay down grid of cells (~ calorimeter cells) and put trial cone at center of each cell

- Calculate the centroid of each trial cone

- If centroid is outside cell, remove that trial cone from analysis, otherwise iterate as before

- Approximates looking everywhere; converges rapidly

- Split/Merge as before
Corrections from Particle Jet to Parton

- Underlying event (UE) and Out-of-cone (OOC) energy
 - Only used if parton energy is wanted
 - Requires MC modeling of UE and OOC
 - Differences are taken as systematic uncertainty

\[P_{T,\text{parton}} = P_{T,\text{particle}} - UE + OOC \]
Out of Cone Energy (OOC)

- **Out-of-Cone Energy:**
 - Original parton energy that escapes the cone
 - E.g. due to gluon radiation
 - Jet shape in MC must describe data:
 - Measure energy flow in annuli around jet

- **Differences between data and MC**
 - Lead to rather large systematic uncertainty
Underlying Event

- Consists of:
 - "beam-beam remnants": energy from interaction of spectator partons
 - "Initial state radiation": energy radiated off hard process before main interaction
Measuring the Underlying Event

“Transverse” region very sensitive to the “underlying event”!

Leading Jet Direction

- **“Toward”** Jet
- **“Away”** Jet
- **“Toward Side”** Jet
- **“Away Side”** Jet

Charged Particle Density

<table>
<thead>
<tr>
<th></th>
<th><1</th>
</tr>
</thead>
</table>

CDF Data

- **630 GeV**
- **1.8 TeV**
- **14 TeV**

Transverse $P_{T_{sum}}$ vs P_{T} (charged jet 1)

- **CDF MinBias**
- **CDF JET20**
- **HERWIG**
- **ISAJET**
- **PYTHIA 6.115**

“Transverse” P_{T} vs P_{T} (charged jet 1) in 1 GeV/c bin

Charged Particle Density

- **Pythia 6.206 Set A**
- **|$\eta|$<1**

Leading Jet Direction

- **“Toward”** Jet
- **“Away”** Jet
- **“Toward Side”** Jet
- **“Away Side”** Jet