Dielectric RF Cavities Addressing the challenges of a Muon collider

Katheryn Decker French

Fermilab: Lee Teng program

August 9, 2010

Katheryn Decker French Dielectric RF Cavities

ヘロン 人間 とくほ とくほ とう

3

Constraints for Muon acceleration

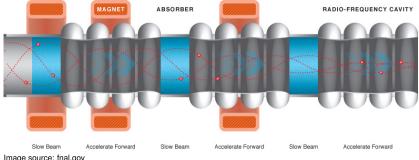


Image source: fnal.gov Muon Acceleration

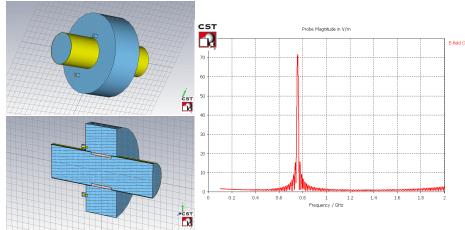
- Muons have a short lifetime
- Ionization cooling lowers momentum in all directions
- RF power is used to accelerate longitudinally

Constraints on accelerating RF cavities

- Must fit inside solenoids
- Use existing RF power supply

イロト イポト イヨト イヨト

Prevent breakdown

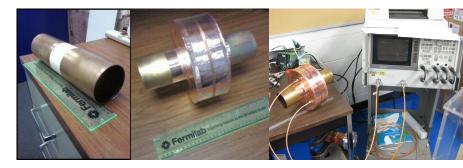

Fermilab linac. Image source: www-bd.fnal.gov

- Radio frequency power used to accelerate charged particles
- Frequency depends on geometry of cavity and the properties of the materials within cavity
- For a basic pillbox cavity:

$$f = \frac{2.405c}{2\pi R\sqrt{\epsilon\mu}}$$

< 🗇 🕨

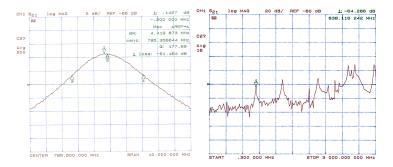
Simulations Using dielectrics to reduce frequency of cavities



The resonant frequency, quality factor, and response to power inputs can be simulated.

• • • • • • • •

프 🕨 🗉 프


Prototype Cavity Construction and Network Analyzer Measurements

- Cavity was constructed around copper pipe with ceramic cylinder inset
- Power was input through antennas in the side of the cavity
- The resonant frequency was measured using a network analyzer

ヘロト ヘアト ヘヨト

Prototype Cavity Network Analyzer Measurements

 The resonant frequency occurs when the transmitted power is at a maximum

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

|--|

Build	Width (mm)	<i>f_{sim}</i> (MHz)	<i>f_{obs}</i> (MHz)	ϵ
1	79	789	836	7.4
2	91	740	785	7.5
3	86	756	807	7.3

Table: Results from Microwave Studio simulation of the resonant mode frequencies for the three cavities, assuming $\epsilon = 9.7$ and tan $\delta = 0.0004$, from observations, and the values of ϵ required to reconcile these discrepancies.

ヘロト ヘアト ヘビト ヘビト

ъ

- Discrepancy between simulated and observed frequencies
 - Relative dielectric constant of ceramic from manufacturer is $\epsilon = 9.7$ at f = 1 MHz
 - Measurements were at f ~ 800 MHz
 - Using three different cavity sizes, the relative dielectric constant of the ceramic at *f* ~ 800 MHz is ε = 7.4 ± 0.1.
- Finding the right material will be a key step in further development of this technology.

< 🗇 > < 🖻 >