Presentation of the LINAC2010 invited talk on Design of Proton Drivers. (Draft as of September 9, 2010)

lean-Paul Carneiro

APC Seminar

September 9, 2010

Multi-GeV Proton and F Linacs

The 1 VV/n beam loss limit

Consideration
Zero-Current
Design

Beam Losses

Jitters
H- Stripping
Correction

Table of Contents

- Overview and Layout of Multi-GeV Proton and H- Linacs
- The 1 W/m beam loss limit
- Beam Dynamics
 - Tracking at Zero Current: Phase Advance, Wavenumber, Parametric Resonances
 - Tracking at High Current: Tune Depression, Core-core resonances
- Beam losses
 - Contribution of different type of errors and jitter
 - H- Stripping limitations from Residual Gas, Magnetic Field and Blackbody Radiation
 - One-to-one Correction Algorihtm
- Conclusion

Multi-GeV Proton and H-Linacs

The 1 W/n beam loss

limit
Design

Zero-Current Design High-Current Design

Beam Losse

Jitters
H- Stripping
Correction
Algorithm

Multi-GeV Proton and H- Linacs Overview

Project	E [GeV]	I _{av} [mA]	Power [MW]	Application	Status
	[GeV]	[۱۱۱۲]	[IVIVV]		
FNAL 8-GeV Pulsed	8	25	2	neutrinos	proposed
FNAL 3-GeV CW	3	1	3	neutrinos	proposed
				kaons, muons	
CERN LP-SPL	4	0.05	0.2	LHC upgrade	proposed
CERN HP-SPL	5	8.0	>4	neutrinos, RIB	proposed
ESS1 (EU)	1.334	3.75	5	neutrons	proposed
ESS2 (EU)	1.334	7.5	10	neutrons	proposed
ORNL SNS1	1	26	1.4	neutrons	in operation
ORNL SNS2	1.3	42	3	neutrons	proposed

Multi-GeV Proton and H-Linacs

The 1 W/m beam loss limit

Design Consideration

Zero-Curren Design High-Curren

Beam Losses

Jitters
H- Stripping
Correction

FNAL 8-GeV Pulsed / 3-GeV CW Linacs Layout

FNAL 8-GeV Pulsed Linac

FNAL 3-GeV CW Linac

Multi-GeV Proton and H-Linacs

The 1 W/n beam loss limit

Design Consideration

Zero-Current Design High-Current Design

Beam Losses

Jitters
H- Stripping
Correction

CERN SPL / ESS Linacs Layout

CERN SPL Linac

ESS Linac

Multi-GeV Proton and H-Linacs

Zero-Current

Correction

ORNL SNS Linac

Multi-GeV Proton and I Linacs

The 1 W/m beam loss limit

Design Consideration

Zero-Current Design High-Current Design

Beam Losses

Jitters H- Stripping Correction

Tolerable Beam Loss in High-Intensity Linacs: 1W/m

- Beam loss in accelerators lead to beamline component activation
- Maintenance Restriction (for example LANSCE, Los Alamos Guidelines)
 - Limited access time: 100 $\mu {\rm Sv/h}$ to 1 mSv/h, 30 cm from the component surface
 - Very limited controlled: 1 mSv/h to 100 mSv/h
 - Remote maintenance required: >100 mSv/h
- Experience from Asia, Europe and US on high-energy accelerators <u>AND</u> calculation results from three different codes (LAHET (Los Alamos), HETC/MCNP/ORIHET (ORNL) and MARS (FNAL)) lead to the basic result:

$$1 \text{ mSv/h} \Longleftrightarrow \sim 1 \text{W/m}$$
 (1)

Multi-GeV Proton and Linacs

The 1 W/m beam loss limit

Design

Zero-Currer Design High-Currer

Beam Losse

_ .

H- Stripping Correction Permissible Beam Loss Fraction to achieve $1~\mathrm{W/m}$

Design Considerations

Zero-Current Design

Considerations

- The zero current phase advance of transverse and longitudinal oscillations should be kept below 90° per focusing period to avoid parametrically-excited instabilities at high-current.
- The transverse and longitudinal wavenumbers k_{T0} and k_{I0} must change adiabatically along the linac to minimize the potential for mismatch and assure a current independent lattice

$$k_{T0} = \frac{\sigma_{T0}}{L_f}, \qquad k_{L0} = \frac{\sigma_{L0}}{L_f} \tag{2}$$

where σ_{T0} and σ_{L0} are the zero current transverse and longitudinal phase advances per focusing period L_f

• Avoid the n=1 parametric resonance between the transverse and longitudinal motion.

Multi-GeV Proton and F Linacs

The 1 W/n beam loss limit

Design Considerations

Zero-Current Design High-Current Design

Beam Losses

Jitters
H- Stripping
Correction

High-Current Design

 Avoid energy exchange between the transverse and longitudinal planes via space-charge resonances by:

- providing beam equipartitioning. Emittance ratio close to one
- avoiding instable areas in Hofmann's stability charts
- Provide Longitudinal-to-transverse emittance ratios close to one (0.5 $< \epsilon_I/\epsilon_t < 2$) and a tune depression > 0.5 provide larger stable areas in the stability charts
- Provide proper matching in the lattice transitions to void appreciable halo formation
- ullet Keep a ratio aperture-to-rms-beam-size > 10, if possible

Multi-GeV Proton and H Linacs

The 1 W/n beam loss limit

Design Consideration

Zero-Current Design High-Current

High-Curren Design

Beam Losses

Jitters
H- Stripping

Zero-Current design

Phase advance

Wavenumber

Multi-GeV Proton and H Linacs

The 1 W/r beam loss limit

Design Consideration

Zero-Current Design

Design High-Currer Design

Beam Losse

Jitters
H- Stripping
Correction

Zero-Current design

 the condition of occurence of an n-th order transverse motion parametric resonance is

$$\sigma_{T0} = \frac{n}{2}\sigma_{L0}$$

- the strongest resonance occur if for n = 1 (grey area)
- the defocusing factor γ_s is defined as

$$\gamma_s = \frac{\pi}{2} \frac{1}{(\beta \gamma)^3} \frac{L_f^2}{\lambda} \frac{e E_m sin(\phi_s)}{m_0 c^2}$$

Kapchinskiy Stability Chart

 $\gamma_s <$ 0.7 \Leftrightarrow stability

Multi-GeV Proton and H Linacs

The 1 W/n beam loss

Design Consideration

Zero-Curre Design

High-Current Design

Beam Losse

Jitters
H- Stripping

High-Current design

Transverse Tune Depression

Longitudinal Tune Depression

High-Current

Design

High-Current design FNAL 8-GeV Pulsed Linac

- core-core resonance
- the shadded area indicate regions where non-equipartioned beams are subject to space-charge coupling resonances that are expected to cause emittance transfer between transverse and longitudinal planes
- the vertical dash line show the condition for equipartition

Hofmann Stability Chart

$$\epsilon_L/\epsilon_T = 2$$

Multi-GeV Proton and H Linacs

The 1 W/n beam loss limit

Design Considerations

Zero-Current Design High-Current Design

Beam Losses

Jitters
H- Stripping
Correction

High-Current design

RMS Emittance Growth

Max. and RMS Hor. Beam Size

Presentation
of the
LINAC2010
invited talk on
Design of
Proton
Drivers.
16/22

Jean-Paul Carneiro

Multi-GeV Proton and H Linacs

The 1 W/r beam loss limit

Design Considerations

Zero-Current Design High-Current Design

Beam Losses

Jitters
H- Stripping
Correction

High-Current design

FNAL 8-GeV Pulsed Linac

99% & 99.99% Hor. Emittance Growth

99% & 99.99% Long. Emittance Growth

Multi-GeV Proton and H Linacs

The 1 W/n beam loss limit

Design Consideration

Zero-Current Design High-Current Design

Beam Lo

Errors and Jitters

H- Stripping Correction Algorithm

Beam Losses Errors in the FNAL 8-GeV Linac

Beam Parameter		Error Value	Distribution
Solenoid Displacement (x and y)	[mm]	0.5	Uniform
Solenoid Rotation (x and y)	[mrad]	2	Uniform
Solenoid Field Jitter	[%]	0.5	Gaussian
Quadrupole Displacement (x and y)	[mm]	0.5	Uniform
Quadrupole Rotation (x and y)	[mrad]	2	Uniform
Qaudrupole Field Jitter	[%]	0.5	Gaussian
Cavity Displacement (x and y)	[mm]	0.5	Uniform
Cavity Rotation (x and y)	[mrad]	2	Uniform
Cavity Field Jitter	[%]	1.0	Gaussian
Cavity Phase Jitter	[%]	1.0	Gausssian

Multi-GeV Proton and H Linacs

The 1 W/m beam loss limit

Design Considerations

Zero-Current Design High-Current Design

Errors and

Jitters H- Stripping Correction

Beam Losses Errors FNAL 8-GeV Pulsed Linac

Loss Pattern from TRACK

Loss Pattern from ASTRA

Presentation of the LINAC2010 invited talk on Design of Proton Drivers. 19/22

Jean-Paul Carneiro

Multi-GeV Proton and H Linacs

The 1 W/r beam loss limit

Design Consideration

Zero-Current Design High-Current Design

Beam Losses

Errors and

H- Stripping

Correction

Beam Losses

Blackbody Radiation

H- Stripping

Algorithm

Blackbody Stripping FNAL 8-GeV Pulsed Linac

HEBT at 300 K

HEBT at 150 K

H- Stripping

Algorithm

Residual Gas Stripping

FNAL 8-GeV Pulsed Linac

HEBT at 300 K

HEBT at 150 K

22/ 22 Jean-Paul Carneiro

Multi-GeV Proton and H Linacs

The 1 W/n beam loss limit

Design Considerations

Zero-Current Design High-Current Design

Beam Losses

Jitters
H- Stripping
Correction
Algorithm

One-to-one correction algorithm

Errors + Correction FNAL 8-GeV Linac

Hor. Beam Centroid Motion (from TRACK)

Loss Pattern (from TRACK)

