

SUSY2011, 30-08-2010

Topics in this Talk

• Measurements of direct CP asymmetry in inclusive $B \rightarrow X_{(s+d)\gamma}$ decays

- Evidence for $B^{\pm} \rightarrow \tau^{\pm} v$
- Measurement of D[±]_s→ℓ[±]v branching fractions and decay constant f_{Ds}
 → impact on the m_{H+} -tanβ plane in MSSM
- Search for $D_{(s)}^{+}/\Lambda_{c}^{+} \rightarrow h^{\pm}\ell^{-}\ell^{+}$ decays

Leptonic and Radiative Decays

Leptonic & radiative decays have small branching fractions in the SM (10-4-10-9), since they involve some suppression mechanisms, e.g.: → higher order processes become leading (penguin loops, box diagrams in radiative decays & rare semileptonic decays) \rightarrow CKM suppression (b \rightarrow u processes) → helicity suppression (W-annihilation) Suppressed processes are very sensitive to new physics contributions which may be similar in size and may interfere with the SM processes producing sizable deviations from the SM prediction → such processes are very suitable for new physics searches providing a complementary approach to direct searches at the Tevatron & LHC With the large data samples of the B-factories (BABAR:426 fb⁻¹ & Belle: 711 fb⁻¹ at Y(45)) it became possible to explore rare decays in the bb and $c\overline{c}$ systems with branching fractions down to 10^{-7} Measurements of $B \rightarrow X_{s\gamma}$ and related processes have set stringent constraints on the SUSY parameter space already probing New Physics at scale of a few TeV Isidori, Nir, Perez arXiv:1002.0900 (2010) G. Eigen, SUSY11 Fermilab, 30-08-2011

Measurement of Direct CP Asymmetry in Inclusive $B \rightarrow X_{(s+d)}\gamma$ Decays

G. Eigen, SUSY11 Fermilab, 30-08-2011

(due to large experimental uncertainties)

Measurements of $D_{s}^{\pm} \rightarrow \tau^{\pm} V$ **Branching Fractions** and for

$D_{s}^{\pm} \rightarrow \ell^{\pm} v$ Analysis Strategy

- Attempt to fully reconstruct events $e^+e^- \rightarrow c\overline{c} \rightarrow DKXD^{*+}_s$, with $D^{*+}_s \rightarrow D^+_s\gamma$, $D^+_s \rightarrow \ell^+\nu$
- $l = e, \mu, \text{ or } \tau; K = K^+ \text{ or } K^0_s; X = \# \text{ of } \pi's (\le 3)$
- Reconstruct D tag hadron fully in D^0 , D[±] and Λ^{\pm}_c decays
- Use 677×10⁶ cc events (L=521 fb⁻¹)
- Obtain normalization samples by reconstructing the recoil mass

$$m_r^2 = \left[p_{e^+} + p_{e^-} - \left(p_D + p_K + p_X + p_\gamma \right) \right]^2$$

Extract D[±]_s yield from 2-d fit to recoil mass and # of reconstructed π's
 yield (67.2±1.5)×10³ D[±]_s events

Conclusion

- The B→X_{s+d} γ CP Asymmetry is consistent with the SM prediction
 → present uncertainties are quite large
- BABAR sees evidence for B[±]→τ[±]v at 3.3σ significance level (incl. sys)
 → measured branching fraction is in good agreement with the Belle result and is nearly 2σ above the SM prediction
- BABAR measures f_{Ds} in D[±]_s→τ[±]ν & D[±]_s→μ[±]ν
 → Averaged with CLEO measurements f_{Ds} lies 1.6σ above SM prediction
- $\mathcal{B}(B^{\pm} \rightarrow \tau^{\pm} \nu), \mathcal{B}(D^{\pm}_{s} \rightarrow \tau^{\pm} \nu), \& \mathcal{B}(B \rightarrow X_{s+d} \gamma)$ set stringent constraints in the m_{H} -tan β plane
- X[±]_c→h[±] *CC*⁺ decays are not seen by BABAR, (improve 8 previous limits)
 → best limit (10⁻⁶) is found for D[±]→K[±]e⁺e⁻,

Significant improvements of these measurements will come from the Super B-factories (stay tuned)

