

Multilepton SUSY Search with 35 pb⁻¹ 2010 Data

Sep 1, 2011 R. Gray, Rutgers University

Richard Gray on behalf of the CMS Collaboration

SUSY11

Outline for today

+ Introduction

- + 2010 35 pb⁻¹ analysis. Submitted to PRL
- + CMS public document.: SUS-10-008
- + SUSY Searches with Leptons and Jets or MET
 - + Multi-Leptons (≥3 Leptons)
- + Conclusions.

Multilepton SUSY Decays

- Leptons produced at the end of a chain of susy decays.
- + Strongly coupled squarks and gluinos are generated in the proton collisions.
- + Some combination of charginos, neutralinos, and sleptons decay to leptons and LSP (dark matter)
- + Final state is ≥3 leptons with some combination of jets and MET

Searching for SUSY with Multi-Leptons

- + Isolated Leptons (not from jet) are rare.
- + SM events with ≥3 leptons are very rare!
 - + Leptons isolated from jets come from gauge bosons γ^{*}/Z^o/W[±]
 - + Allow less stringent cuts on MET or Jets than other searches.
- + Many SUSY scenarios produce ≥3 leptons.
 - + Also large hadronic energy, MET or both.
- + Reduce backgrounds with two variables:
 - MET: Missing transverse energy (neutrinos or LSP)
 - + HT : Σp_T (jet) with $p_T > 40 \text{ GeV}$, $|\eta| < 2.4$
 - + Note: \geq 3 leptons allow looser cuts on MET/H_T than \geq 2

Background reduction variables

Even after requiring 3 or more leptons, there are still some SM backgrounds. These can be removed by cutting on missing transverse energy or H_T .

 H_T is the total jet E_T for jets with E_T > 30 GeV

R. Gray, Rutgers University

Background reduction variables

Beware, models vary. Not all of them have large $H_{T_{r}}$ not all have MET

Event selection

+ Include 3 and \geq 4 lepton combinations with \leq 2 τ 's

- + Use single e and single μ Triggers
- + Veto events where $M(I+I-) < 12 \text{ GeV} (J/\psi, Upsilon, Drell Yan)$
- + Require $\ge 1 \mu$ with pt > 15 GeV or $\ge 1 e$ with pt > 20 GeV

Lepton Selection (e, μ, τ)

+ Electrons and Muons:

- + $p_T > 8 \text{ GeV}, |\eta| < 2.1$
- + Identification:
 - + Electrons ~90-95% efficient for pT > 20 GeV
 - + HoverE, track shower match, shower shape.
 - + Muons ~95% efficient for pT
 - + Minimum ionizing and good match between tracker and muon detectors.

+ Tau Leptons:

- + Tau are unstable and decay
- + Leptonic decays fall under e/μ
- + Single prong, no π°
 - + Isolated track
- + Single Prong with π° and 3 prong
 - + "Shrinking Cone" algorithm (skinny jet)
- + Visible $p_T > 8 \text{ GeV}, |\eta| < 2.1$

35%
$$\ell^+ \nu_\ell \bar{\nu}_\tau$$

11.61% $h^+ \bar{\nu}_\tau$
36.54% $h^+ \bar{\nu}_\tau \ge 1\pi^0$
15.19% $h^+ h^- h^+ \ge 0\pi^0 \ge 0K_L^0 \bar{\nu}_\tau$

Removing Leptons from Jets

+ Isolated from jets.

- + Sum transverse energy in cone around lepton from tracks.
- + Require energy in cone to be small compared to the lepton.

- + Not displaced from collision.
 - + Leptons from jets can start farther from interaction vertex
 - + Require lepton to have small "impact parameter"

Background Predictions

- + Some are directly from Monte Carlo (MC)
 - + Irreducible backgrounds: WZ+Jets, ZZ+Jets
 - + Corrected to match efficiency measurements.
 - + Small cross sections.
- + Some are from MC with Data Controls or Scale Factors
 - + Including TTbar and FSR from dileptons
 - + Correct MC to match efficiency measurements
- + The rest are completely "Data Driven"
 - + Z+Jets, WW+Jets, W+Jets, QCD
 - + No MC required.

TTbar Background

- + Obtained from Monte Carlo but validated in control data.
 - + Compare MC to relevant distributions in data dominated by TTbar.

+ Compare non-isolated tracks in e⁺μ⁻ events (multiple entry)

- + Look at large and small impact parameter
- + Related to # of fake leptons, # of b-jets

 $e^+\mu^-$: p_t of Tracks with $|d_{xy}(BS)| < 0.02 \text{ cm}$ $e^+\mu^-$: p_t of Tracks with $|d_{xy}(BS)| > 0.02 \text{ cm}$

Data Driven Background Predictions

- + Number e/ μ from jets proportional to number k/ π from jets.
 - + Count isolated tracks to imply number of leptons from jets.
 - + Determine conversion factor in di-jet data.
 - + Use impact parameter distribution of tracks to understand systematic.
- + Use isolation side band for fake Tau background.
 - + Use di-jet data to parameterize conversion factor.
 - + Use region beyond sideband to understand systematic.

+ Apply background estimation procedures to seeds.
 + Predict e or μ from jet using isolated track (~40% systematic)
 + Predict fake Tau using isolation side band. (~30% systematic)

Background Tests

+ $\mu^+\mu^-\mu^\pm$ (MET < 50 GeV, H_T < 200 GeV, with Z candidate)

Obs	SM Total	Data Driven	TTbar	WZ(ZZ) FSR +Jets		
2	1.8±0.3	1.1	0.01	0.7	0	

+ $\mu^+\mu^-e^\pm$ (MET < 50 GeV, H_T <200 GeV, with Z Candidate)

Obs	SM Total	Data Driven	TTbar	WZ(ZZ)+Jets	FSR
2	1.4 ± 1.1	0.7	0.005	0.5	0.2

+ $\mu^+\mu^-T^\pm$ (MET < 50 GeV, H_T<200 GeV, with Z Candidate)

Obs	SM Total	Data TTbar Driven		WZ(ZZ) FSR +Jets		
43	56 ± 12	55.8	0.02	0.25	0.3	

Sep 1, 2011

R. Gray, Rutgers University

Observations and Backgrounds

Sep 1, 2011

Multi-Lepton Summary Table

No statistically significant deviation from the standard Model.

	After Lepton ID Requirement				MET > 50	GeV	$H_{T} > 200$) GeV	ML01 S	eV ML01 Signals ata MET > 50 H_T > 200 1 121.4 141.5		
	Z +jets	tĪ	VV +jets	ΣSM	Data	ΣSM	Data	ΣSM	Data	MET > 50	$H_{T} > 200$	
Channel	3-lepton channels											
ll (OS)e	1.7	0.1	1.2	4.4 ± 1.5	6	0.1 ± 0.1	0	0.2 ± 0.1	1	121.4	141.5	
ll (OS) μ	2.83	0.2	1.7	4.7 ± 0.5	6	0.10 ± 0.1	0	0.1 ± 0.1	0	123.6	120.8	
ll (OS)T	121.5	0.5	0.7	123 ± 16	127	0.4 ± 0.1	0	_	-	80.5	_	
ll(OS)τ	476	2.7	3.9	484 ± 77	442	-	-	0.6 ± 0.2	1	-	68	
Π΄T	0.72	0.5	0.2	1.7 ± 0.7	3	0.4 ± 0.2	2	-	-	18.6	-	
ll΄τ	4.7	2.9	0.6	11.2 ± 2.5	10	-	-	0.4 ± 0.1	1	-	12.3	
ll (SS)l	0.13	0.1	0.0	0.2 ± 0.1	0	0.2 ± 0.1	0	0	0	2.8	2.8	
ll(SS)T	0.25	0.0	0.1	0.7 ± 0.4	3	0.1 ± 0.1	0	-	-	9.0	_	
II(SS)τ	1.4	0.0	0.1	3.0 ± 1.1	3	_	-	0.0 ± 0.1	0	_	6.9	
ΣIII(T)	127.1	1.4	3.8	135 ± 16	145	1.3 ± 0.2	2	-	-	355.9	_	
Σ III (τ)	486.8	6.0	7.5	507 ± 77	467	-	-	1.3 ± 0.3	3	-	349.5	
ITT	47.1	0.33	0.1	48 ± 9	30	0.4 ± 0.1	0	-	_	8.0	_	
Channel	4-lepton channels											
	0	0	0.2	0.2 ± 0.1	2	0	0	0	0	163.9	149.2	
IIIT	0	0	0.1	0.1 ± 0.1	0	0	0	_	-	62.3	-	
lllτ	0	0	0.1	0.1 ± 0.1	0	-	-	0	0	-	33.2	
IITT	0	0	0	0.0 ± 0.1	0	0	0	-	-	20.6	-	
ΙΙττ	3.1	0.1	0.1	3.2 ± 0.7	5	_	_	0	0	-	16.8	
ΣIIII(T)	0	0	0.3	0.3 ± 0.1	2	0	0	_	-	246.8	-	
Σ IIII (τ)	3.1	0.1	0.4	3.5 ± 0.7	5	-	_	0	0		199.2	

95% Excluded Scenarios cMSSM tan(β)=3

+ cMSSM

- + Popular scenario that reduces SUSY parameters down to 5.
 - + Mo, M1/2, ao, sign(μ), tan(β)
- + Standard to compare experiments, but not realistic model.
- Mass scenarios below solid black line are now excluded.

Sep 1, 2011

R. Gray, Rutgers University

95% Excluded Scenarios (Multi-Leptons)

+ Slepton co-NLSP

- Sleptons have ~ the same mass, and are closest to the lightest SUSY particle which happens to be a gravitino.
- + At least 4 leptons produced per event.
- + Mass scenarios below solid line are now excluded.
- Tevatron only excluded gluino mass < 400 GeV

95% Excluded Scenarios (Multi-Leptons)

+ R-parity violation

- R-parity is conserved in most SUSY scenarios. But it might be violated.
- If violated leptonically, can be 4 or more leptons produced per event.
- + Two curves for two different scenariois.
 - + λ123 contains 2L+2Tau
 - + λ122 contain no Tau.
- Mass scenarios below solid line are now excluded.

Conclusions

- + Presented SUSY in multi-leptons with 35 pb⁻¹ 2010 CMS data.
 - + Use combination of MC and data-driven SM background predictions
 - + Make use of control objects to understand/control fake rate systematics.
 - + Results consistent with the standard model.
 - + Set new limits on slepton co-NLSP topology and R-Parity violating SUSY.
- The 35 pb⁻¹ data consistent with the SM, and constrained the range of many SUSY possibilities beyond the reach of the Tevatron.
- + More data is here 2 fb⁻¹!!! The search continues.