Introduction • 0	Theoretical Motivation	Experimental Searches	Summary o

Tevatron searches for charged and doubly-charged Higgs

Zdenek Hubacek CEA Saclay, Irfu, SPP (on behalf of CDF and DØ Collaborations)

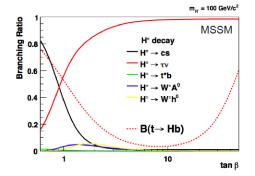
SUPERSYMMETRY 2011 Fermilab Aug 28 - Sep 2, 2011

Experimental Searches

TALK OUTLINE

- Several extensions to the SM predict additional Higgs Bosons
 - ► Charged Higgs (*H*⁺)
 - ► Doubly charged Higgs (*H*⁺⁺)
- Experimental searches at CDF and DØ
- Summary

CHARGED HIGGS BOSONS

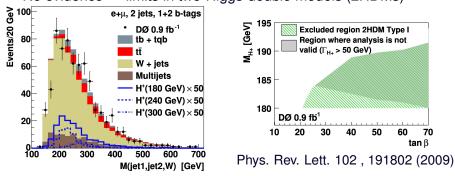

- Singly charged Higgs
 - Arise in models with two Higgs doublets SUSY and some GUT
 - Different models to avoid FCNC
 - ► Typically depends on M_{H⁺} and tan β: either direct production pp̄ → H⁺ → tb̄ or top quark decays pp̄ → tt̄ → (H⁺b)(W⁻b̄)
- Doubly charged Higgs
 - Exotic extensions of the Higgs sector (Left/Right symmetric models, Higgs triplet, Little Higgs)
 - ► Depend on $M_{H^{++}}$ and Higgs couplings direct production $p\bar{p} \rightarrow H^{++}H^{--} \rightarrow I^+I^+I^-I^-$

Introduction	Theoretical Motivation ○●	Experimental Searches	Summary o
MSSM			

MSSM Higgs sector needs 2 Higgs doublets which leads to 5 Higgs bosons $(h/H/A, H^{\pm})$ At the tree level, two parameters tan β (v_u/v_d vev ratio) and $M_{H^{\pm}}$

tan β controls the H^+ decay:

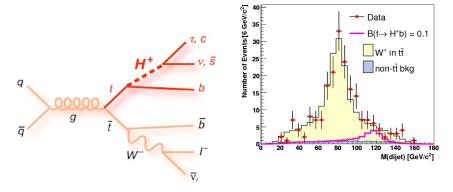
- $H^{\pm} \rightarrow \tau \nu$ (high tan β)
- $H^{\pm} \rightarrow c\bar{s}$ (low tan β)



Introduction	Theoretical Motivation	Experimental Searches	Summary
00	00	●0000000	0

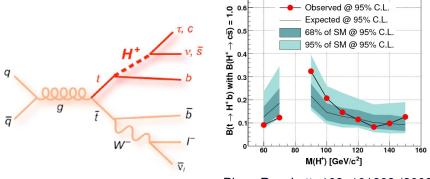
$M_H > M_t$: DIRECT PRODUCTION

Search for high mass $180 < M_H < 300 \text{ GeV}$ Higgs boson reconstructed in $H^+ \rightarrow t\bar{b} \rightarrow W^+ b\bar{b} \rightarrow l^+ \nu b\bar{b}$ - selection similar to single top analysis.


Discriminating variable - the $M(t\bar{b})$ spectrum - M(jet1, jet2, W)No evidence \rightarrow limits in two-Higgs-double models (2HDMs)

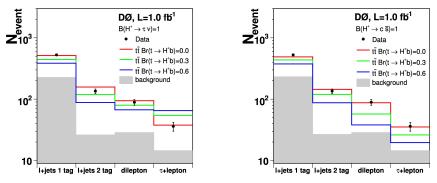
Introduction	Theoretical Motivation	Experimental Searches	Summary
00	00	0000000	0

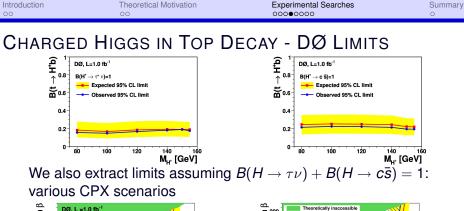
$M_H < M_t$: Charged Higgs in Top Decay

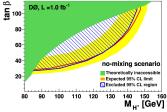

Search for H^{\pm} using top pair production: CDF - in MSSM @low tan β - search for $H \rightarrow c\bar{s}$ second peak in the invariant mass of two light jets

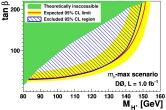
Introduction	Theoretical Motivation	Experimental Searches	Summary
00	00	0000000	0

$M_H < M_t$: Charged Higgs in Top Decay

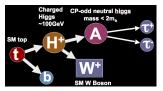

Search for H^{\pm} using top pair production: CDF - in MSSM @low tan β - search for $H \rightarrow c\bar{s}$ second peak in the invariant mass of two light jets



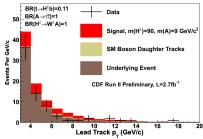

Phys. Rev. Lett. 103, 101803 (2009)

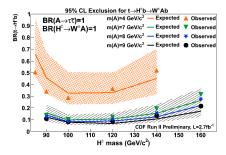

CHARGED HIGGS IN TOP DECAY

DØ: search for H^{\pm} using top pair production, consider either purely tauonic or purely leptophobic decay Maximum likelihood fit to the number of events



Phys. Lett. B 682, 278 (2009)

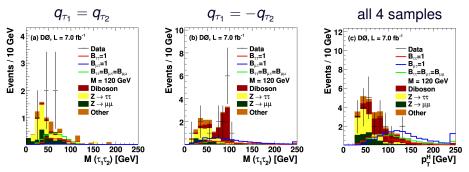

Introduction	Theoretical Motivation	Experimental Searches	Summary
00	00	00000000	0


NMSSM

Includes additional CP-even and CP-odd neutral Higgs bosons and an additional neutralino - search H^+ if $M_A < 2M_b$

The τ s from the A boson typically have low p_T , bad for efficient τ identification \rightarrow search instead for isolated low p_T track in lepton+ 3+ jets sample with *b*-tag and missing E_T .

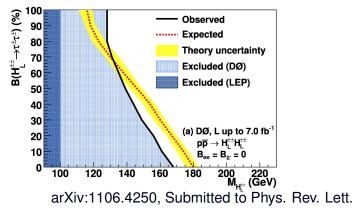
CDF Note 10104


DOUBLY CHARGED HIGGS

- ► Higgs triplet, SU(3)_c × SU(3)_L × U(1)_Y, Little Higgs, Left-Right symmetric models, ...
- Search for H⁺⁺ in qq̄ → H⁺⁺H^{-−} decaying through H^{±±} → τ[±]τ[±], μ[±]τ[±], μ[±]μ[±] (Preferred decay modes depend on a model)
- Select events with at least 1 muon and at least 2 hadronicaly decaying *τ* candidates, sum of charges Q = ∑_{i=µ,τ1,τ2} = ±1

	Summary
00 00 000000	0

Divide sample into 4 non-overlapping samples depending on the charges of the leptons:


- 1. $N_{\mu} = 1, N_{\tau} = 2$ and $q_{\tau_1} = q_{\tau_2}$
- 2. $N_{\mu} = 1, N_{\tau} = 2$ and $q_{\tau_1} = -q_{\tau_2}$
- 3. $N_{\tau} = 3$
- 4. $N_{\mu} = 2$
- ► Discriminating variables: for 1,2 $M(\tau_1, \tau_2)$, for 3,4 N_{evt}

Introduction	Theoretical Motivation	Experimental Searches	Summary o

DOUBLY CHARGED HIGGS LIMITS

Branching fraction	obs (exp) limits
B(H ightarrow au au) = 1	$M_{H_{l}^{++}} > 128(116){ m GeV}$
$B(H ightarrow \mu au) = 1$	$M_{H_{\iota}^{++}} > 144(149){ m GeV}$
$B(H \rightarrow \tau \tau) = B(H \rightarrow \tau \mu) = B(H \rightarrow \mu \mu) = 1/3$	$M_{H_{e}^{++}}^{L} > 138(130) { m GeV}$
$B(H ightarrow au au) + B(H ightarrow \mu\mu) = 1$	below

SUMMARY

- Charged Higgs boson is a clear sign of physics beyond the Standard Model
- No excess observed set limits on singly and doubly charged Higgs boson production in various models
- Tevatron giving the baton to LHC now