SUSY 2011 Conference - FNAL

WW / WZ / ZZ Diboson Production at the Tevatron

Kyle J. Knoepfel Fermi National Accelerator Laboratory

On behalf of the CDF and Do Collaborations

August 30, 2011

Getting to Higgs Territory

- Higgs production crosssections are very small
 (0.01 to 1) pb
- Look in production modes/ decay channels with highest statistics
- Naïve Search Channels:
 - Low-mass Higgs (m_H < 135 GeV)

 $gg \to H \to b\bar{b}$

 High-mass Higgs (m_H > 135 GeV)
 $gg \to H \to W^+W^-$

Getting to Higgs Territory

- In reality...
 - Large multijet QCD backgrounds make $gg \to H \to bb$ searches unfeasible at low Higgs mass
 - Search for low-mass Higgs with associated production:

$$p\bar{p} \to VH \to X + b\bar{b}$$

- Small cross-sections!
- To validate Higgs search procedures, search for known SMprocesses with "comparably"-small production cross sections:

Diboson Production!

Diboson vs. Higgs Analyses

• Feynman diagrams are topologically equivalent

- Same final states, and therefore same analysis strategy, modulo different definitions of signal.
 - Retraining signal/background discriminants

- Dominant decay modes are to jets, limited energy resolution
- Start with leptonic decay modes, benefit from precise energy determinations from trackers and electromagnetic calorimeters

Previous Diboson Searches

- First observation of diboson production in lepton channels (2005)
- WW production in 2 Leptons plus Missing Energy

D0: PRL **94** 151801 (2005) CDF: PRL **94** 211801 (2005)

 First evidence of WW/ WZ production in 2 jets + 1 lepton:

4.4σ

D0: PRL **102** 161801 (2009)

 First observation of WW/WZ/ZZ production in 2 jets + MET: 5.3σ

CDF: PRL 103 091803 (2009)

Getting Closer to the Higgs

- Diboson production observed in hadronic final states
- Look for diboson production in final states with two *heavy-flavor* (H.F.) jets
- Discussed today—diboson final states with the following reconstructed objects:

H.F. Jets	Leptons	Missing E?	Analogous Higgs Process
2	2	Νο	$ZH ightarrow \ell\ell + b\bar{b}$
2	1	Yes	$WH \to \ell \nu + b \bar{b}$
2	0	Yes	$ZH o \nu \bar{\nu} + b \bar{b}$

SUSY 2011 8 Tagging heavy-flavor jets Jet **Displaced tracks** Both collaborations use **Decay lifetime** algorithms to identify b(c)-jets. Secondary vertex Lxy Neural networks **Primary vertex** Decision trees d0 **Prompt tracks** Use variables which depend on longer lifetimes and heavier sti 0.35 masses of B(D)-hadrons Non-b jets arbitrary Displaced vertex (L_{xy}, d_0) 0.3 b jets 0.25 Jet lifetime Jet mass 0.2 Distribution of tracks within the 0.15 jet cone 0.1 • etc. 0.05

-0.5

0.5

Jet Bness

Detectors

- Center-of-Mass Energy: 1.96 TeV
- 11.7 fb⁻¹ delivered to both experiments

- CDF II Detector
 - Collected Lumi: ~9.7 fb⁻¹
 - Analyzed Lumi: $\leq 7.5 \text{ fb}^{-1}$

- D0 Detector
 - Collected Lumi: ~10.5 fb⁻¹
 - Analyzed Lumi: ≤ 8.4 fb⁻¹

2 Jets + 2 Leptons + No Missing Energy

Final States:

$$WZ \to q\bar{q}' + \ell\ell ZZ \to q\bar{q} + \ell\ell$$

Benefit:Can completely reconstruct the ZDownside:Small Z-to-leptons branching ratio (~7%)

(*b*-) jets + 2 Leptons (6.6 fb⁻¹)

- Selection criteria
 - Lepton P_T > 20 GeV/c
 - $76 < m_Z < 106 \text{ GeV/c}^2$
 - 2 Jet E_T > 20 GeV
 - Interpreting of a state of the state of
 - Small MET
 - etc.
- Energy Adjustments
 - Electrons: Z+0 jets
 - Z-peak matches in MC and data
 - Jets: Z+1 jets
 - Gluon- and quark-like jets treated differently in MC

- Analysis performed in three channels
 - HF-Tag channel
 - LF-Tag channel
 - No-Tag channel

(*b*-) jets + 2 Leptons (6.6 fb⁻¹)

- HF-tagged event based on bness (NN):
 - Track p_T
 - Track rapidities
 - Impact parameters
 - etc.

(arXiv:1108.4738)

- LF-tagged event based on quark-gluon discriminant:
 - Track/tower distributions within jet
 - No. of tracks/towers
 - Jet η
 - Jet E_T
 - etc.
- No-tagged event fails both of these criteria

Sum Jet bness

Final QG Value

(*b*-) jets + 2 Leptons (6.6 fb⁻¹)

Close to SM diboson production sensitivity in this channel.

2 Jets + 1 Lepton + Missing Energy

Final States:

$$WW \to \ell\nu + q\bar{q}' \qquad WZ \to q\bar{q}' + \ell\ell WZ \to \ell\nu + q\bar{q} \qquad ZZ \to q\bar{q} + \ell\ell$$

Benefit:Large branching ratio to hadronic final statesDownside:Backgrounds from multi-jet QCD

b/c-Jets + 1 Lepton + MET (7.5 fb⁻¹)

- Selection criteria (e.g.)
 - Missing $E_T > 20 \text{ GeV}$
 - Lepton $E/P_T > 20 \text{ GeV}$
 - 2 Jet E_T > 20 GeV
- Results determined from two regions
 - Only 1 HF-tag
 - Only 2 HF-tags

- Fake-W backgrounds suppressed by support vector machine (SVM) algorithm (e.g.):
 - Lepton P_T
 - MET
 - Electron-MET Angle
 - Jet 2 E_T
 - Significance of MET
- Remaining backgrounds
 - Fake-W
 - W + non-resonant b-jets
 - W + Mis-tagged Jets
 - Electroweak

b/c-Jets + 1 Lepton + MET (7.5 fb⁻¹)

CDF Run II Preliminary (7.5 fb⁻¹)

16

Minv(jet1, jet2) GeV/c2

 $\sigma(p\bar{p} \to WW, WZ) = 1.08^{+0.26}_{-0.40} \times \sigma_{\rm SM}$

18

2 Jets + 0 Leptons + Missing Energy

Final States:

$$\begin{array}{ll} WZ \to q\bar{q}' + \nu\bar{\nu} & WW \to \ell\nu + q\bar{q}' \\ ZZ \to q\bar{q} + \nu\bar{\nu} & WZ \to \ell\nu + q\bar{q} \end{array}$$

Benefits: Large branching ratio to hadronic final states Large-ish *Z-to-neutrinos* branching ratio (20%)

Downside: Very large backgrounds from multi-jet QCD

Missing Energy + *b*-jets (8.4 fb⁻¹)

- QCD backgrounds suppressed with selection criteria:
 - Missing E_T > 30 GeV
 - MET-Jet Angle > 23 degrees
 - Jet1-Jet2 Angle < 165 degrees</p>
 - MET significance > 5
- Boosted Decision Tree used to identify *b*-jets
- Boosted Decision Trees used to suppress
 - QCD multi-jet backgrounds (MJDT)
 - Remaining SM backgrounds
- Analysis performed in 1- and 2-btagged channels

Ł

Missing Energy + *b*-jets (8.4 fb⁻¹)

Missing Energy + *b*-jets (8.4 fb⁻¹)

VZ→v⊽bb Analysis

Significance: 2.8σ (obs.) 1.9σ (exp.)

Missing Energy + (b-) jets (5.5 fb⁻¹)

- CDF analysis performed with at • QCD backgrounds suppressed by:
- - MET-Jet Azimuthal Angle > 0.4

(avoids instrumental MET)

- *b*-jets identified with *b*ness • variable
- Remaining QCD multijet background measured in data control region
- Analysis performed in *b*-tagged and untagged samples
 - Results determined from simultaneous fit to both samples

Conclusions

- Diboson production is a rare process with cross-sections near the Higgs production level
- Increased sensitivity to diboson production with new analyses, and close to evidence in *b*-tagged jets
 - WW, WZ production: CDF (HF-jets) 3.0σ
 WZ, ZZ production: D0 (*b*-jets) 2.8σ
- Significances will increase with more luminosity, refined analysis techniques
- D0 + CDF combination planned for individual WZ and ZZ cross-section measurements with *b*-jets.

Thank you.

Public Webpages

• D0

 http://www-d0.fnal.gov/Run2Physics/WWW/results/final/ EW/E08H/

- CDF
 - http://www-cdf.fnal.gov/physics/new/hdg/Results_files/ results/wzllbb_071911/Diboson_public_6.6fb.html
 - http://www-cdf.fnal.gov/physics/new/hdg/Results_files/ results/wzlnubb_071911/
 - http://www-cdf.fnal.gov/physics/new/hdg/Results_files/ results/wzzz_sep10/METBB_dibosons/ Dibosons_METJJ_2.html

26

Back-up Slides

27

Some definitions

MET Missing Transverse Energy

- "tagged" Jet identified as a *b*-jet
 - HF Heavy Flavor
 - LF Light Flavor
 - **NN Neural Network**