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Outline
• Review of ‘traditional’ NJL model

• 5D NJL

• Propagators in a compact dimension

• Loops with a compact dimension

• Results and conclusion
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NJL Model
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So we have an effective lagrangian at scale   :Λ

Which has a SU(N) Chiral symmetry.
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Integrate out massive gluon:
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and work with fermion bubble approximation:

Perform a field redefinition with an auxiliary field H:

HH

l

r

H

H

H

H

l

l

r r

NJL Model

Lµ = iψ̄L /∂ψL + iψ̄R /∂ψR + g̃Hψ̄LψR + h.c. + ∂µH∂µH† − m̃2|H|2 − λ̃|H|4
Which produces an effective Lagrangian

L = iψ̄L /∂ψL + iψ̄R /∂ψR + gψ̄LψRH + h.c.− Λ2|H|2
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1− g2Nc

8π2
< 0

µ ! ΛFor          H develops a vev for critical values of the gauge 
coupling:

Chiral Symmetry spontaneously broken.

Top Condensation
At the low scale    the higgs mass is:µ

m̃2 =
2
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8π2

2g2Nc
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(
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))
≈ 2

log Λ2
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g2Nc
− 1

)
Λ2

NJL model: Nambu, Jona-Lasino 
Top Condensate model: Miransky, Tanabashi, 

Yamawaki, Bardden, Hill and Linder

mt = 170GeV

so for
the top at works best.

mH = 2mfUp to RG corrections mH ∼ O(100GeV)
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Flat 5D

g2

Λ3
t̄ltr t̄rtl

z = 0 z = L ~ (TeV)
-1

Goal: Study 4 fermion operator in bulk of compactified 
5th dimension and possible bound states

[ψ] = M2

In 5D:
[g2] =

1

M
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Fermions in 5d
• In 5D dimensions 
• To get a chiral spectrum on an interval choose B.C. 

{γM , γN} = 2ηMN

For example: ψ =

(
ψL

ψR

)
ψR|z=0,L = 0

(∂z −m)ψL|z=0,L = 0
with

massless Weyl fermion

Tower starting with massΨ5D =
(

χ(0)

0

)
+

∑

n=1

(
χ(n)

ψ̄(n)

)

∼ 1

L
∼ TeV

So for                these are 5D Dirac fermions whose 
(massless) zero modes are standard model tops

g2

Λ3
t̄ltr t̄rtl

7



5D calculation

= ψ(1)
KK ψ(2)

KK+ +...

In KK picture:

=

So while some sums have closed forms, not every one 
does and a bulk fermion mass is not easily incorporated
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For some case the mass spectrum might be simple:

=
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5D mixed propagator 
loops

g2
∫ L

0
dz

∫ L

0
dz′
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Tr ∆l(z, z

′; q)∆r(z
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∑
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Alternatively work in a ‘mixed’ basis:
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5D Mixed propagators
(k/ + iγ5∂z −m)∆(z, z′; k) = iδ(z − z′)Need to solve:

Defining

(∂2
z + (k2 −m2))FL,R = iδ(z − z′)The F’s satisfy:

For example, for a left-handed chiral zero mode

Fl,R =
−i

2χ sinχL
[cosχ((L− |z − z′|)− cosχ((L− (z + z′))]

Where χ ≡
√
k2 −m2

∆ =

(
∆LR ∆LL

∆RR ∆RL

)
=

(
(−∂z +m)FR kµσµFL

kµσ̄µFR (∂z +m)FL

)
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5D loops

We are interested in the running of the parameters so we 
take the high energy limit to find dependance on the cutoff

Nonlocal terms appear in the effective lagrangian:

∫ L

0
dz

∫ L

0
dz′f(qE)e

−qE |z−z′|H(z)H†(z′)

• All divergences are local.

• All divergences are parameterized by 4D cutoff. 

m0(Λ)HH†(0) +mL(Λ)HH†(L) +m(Λ)

∫ L

0
dzHH†(z)

∫ L

0
dz

∫ L

0
dz′f(q)eiq|z−z′|H(z)H†(z′)
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In bulk and on branes we naively expect divergent 
structure of noncompact 5 and 4 dimensions, respectively.

δm2
5d = g2(b1Λ

3 + b2Λ+ finite)

δZ2
5d = g2(a1Λ+ finite)

δZ2
4d = g2(c1 logΛ+ finite)

δm2
4d = g2(d1Λ

2 + d2 logΛ+ finite)

But in effective brane Lagrangian not all the naive 
corrections appear 

Effective Lagrangian
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Effective Lagrangian
At one fermion loop we have:

All brane localized terms are related to fermion bulk mass:
• No quadratic divergences on the brane
• No 4D kinetic terms on brane
•           terms are trivial for vanishing fermion mass(∂zH)2

Lbrane =
g2

32π2

{
log(LΛ)

[
(3m2

l + 2mlmr + 3m2
r)H(0)H†(0)

+ (ml −mr)
(
H(0)H†(0)

)′
+H ′(0)H ′†(0) + 0 ↔ L

]
+

+2(ml −mr)Λ
(
H(0)H†(0)−H(L)H†(L)

)}
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Orbifold
If had instead taken the orbifold as a starting point we 
would have made an identification 
in order to produce a chiral spectrum

ψ(+z) = ±γ5ψ(−z)

z = -L z = Lz = 0 
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m(z)

z = -L z = Lz = 0 

m(z) = m(θ(z)− θ(−z))Which is satisfied by
which violates translational invariance.      

∫ L

−L
m(z)ψ̄(z)ψ(z)•In order to have a mass term we need 

•Any brane term also violates translational invariance

Orbifold
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Effective Lagrangian
Although           brane terms are not proportional to 

bulk fermion mass, they are trivial in the case of a 
vanishing bulk fermion mass.

(∂zH)2

(δH∂zH + δ(∂zH)2)|z=0,L = 0
!

Varying the action we would obtain:

Which would be satisfied by ∂zH|z=0,L = 0
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Top Condensate in 5D
2 ways to break chiral symmetry now:

•Bulk potential with critical gauge coupling g

Lbrane ≈ (ml −mr)
(
H(0)H†(0)−H(L)H†(L)

)

z = Lz = 0 
•Brane potential with fermion masses:

z = Lz = 0 

V(z)

V(z)
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Fermion Condensate in 5D

m =
2

L
m0 = −mL =

√
2.021

L

v0 = 4.8 · 10−4 1

L
z0 = 1.32L

v′′(z) = m2v(z) +
λ

L
v(z)3〈H(z)〉 ≡ v(z)√

2L

κ± = (m̃L)2 ±
√

(m̃L)4 − 2λ̃v0

The vev EOM:

Can be solved exactly:

Where:

For example for:
We have:

v(z) =
2iv0
κ−

√
λ̃/L
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sn

(√
−(z − z0)2κ−

2L2

κ+

κ−

)
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Summary
• Analyzed scalar condensate arising from a 4 

fermion operator with a compact extra dimension.

• Performed one loop approximation in mixed basis.

• Brane localized divergences are softer than 
expected.

• Can break chiral symmetry with bulk or brane V. 

• There are power law divergences so the model is 
fine tuned.

• Future work: phenomenology, model in warped 
(RS) space. 19


