Composite GUTs: model building and expectations at the LHC

M. Frigerio J. Serra A. Varagnolo

based on 1103.2997 [hep-ph], JHEP 1106:029,2011

Supersymmetry 2011, Fermilab

イロト イポト イヨト イヨト

ъ

Composite GUTs: model building and facing the LHC

M. Frigerio J. Serra A. Varagnolo

based on 1103.2997 [hep-ph], JHEP 1106:029,2011

Supersymmetry 2011, Fermilab

イロン イボン イヨン イヨン

ъ

Outline

Motivations and Intro

- SUSY & the ALTERNATIVES
- Some tools

2 Model Building

- The idea, and real life
- Our pNGBs, our Exotics and the EWPTs
- Some phenomenology
 - Some doubts
 - Some hope

≣ ▶

Motivations and Intro

Model Building Some phenomenology Summary SUSY & the ALTERNATIVES Some tools

< ロ > < 同 > < 三 >

Outline

Motivations and Intro

- SUSY & the ALTERNATIVES
- Some tools

2 Model Building

- The idea, and real life
- Our pNGBs, our Exotics and the EWPTs
- 3 Some phenomenology
 - Some doubts
 - Some hope

SUSY & the ALTERNATIVES Some tools

ヘロト ヘアト ヘビト ヘ

Motivations for CompoGUTs

Unification and its many appealing virtues

- charge quantization
- gauge quantum numbers of fermions
- chiral anomalies cancellation
- relative low energy values of SM gauge couplings
- and more (DM stability, masses of vs,...)
- solution to the Hierarchy Problem (orthogonal to SUSY)
- predict properties of lightest states coming from the new Strong Sector: partners of Higgs and top
- accept the LHC challenge

SUSY & the ALTERNATIVES Some tools

< □ > < 同 > < 三 > <

三 🕨 👘

SUSY

Why we love SUSY:

- Solution to the Hierarchy Problem
- Improves Unification (with full perturbativity up to *M_{GUT}*)
- Rich Pheno: new states predicted (Dark Matter?)

Of course, we do have some complaints/doubts:

- need for extra symmetry to avoid, e.g., p-decay (R-parity)
- parameter space for simplest models of SUSY shrinking
- nature has shown us other ways (QCD, SC)

All in all, not unwise to consider alternatives

SUSY & the ALTERNATIVES Some tools

イロト イポト イヨト イヨト

3

ALTERNATIVES

The big thing: Solve the HP.

Many candidates: Technicolour, Higgsless, Extra Dimensions, ... Composite Higgs.

SUSY & the ALTERNATIVES Some tools

ヘロン 人間 とくほ とくほ とう

1

ALTERNATIVES

The **big thing**: Solve the HP.

Many candidates: Technicolour, Higgsless, Extra Dimensions, ... Composite Higgs.

Focus on CH scenario:

- Solution to HP \rightarrow move to the little HP (Fine Tuning!)
- ?? Unification ?? not perturbative!
- ?? New states ?? Huge model dependence + some of them we cannot control (heavy resonances) ← the price of having a Low E effective description

SUSY & the ALTERNATIVES Some tools

ヘロト ヘアト ヘビト ヘビト

ALTERNATIVES

The **big thing**: Solve the HP.

Many candidates: Technicolour, Higgsless, Extra Dimensions, ... Composite Higgs.

Focus on CH scenario:

- Solution to HP \rightarrow move to the little HP (Fine Tuning!)
- ?? Unification ?? not perturbative!
- ?? New states ?? Huge model dependence + some of them we cannot control (heavy resonances) ← the price of having a Low E effective description

One step at a time. Why can't we tell if our model unifies?

SUSY & the ALTERNATIVES Some tools

Do you know your beta functions?

Or: how to check if Unification occurs

(日)

프 🕨 🗉 프

SUSY & the ALTERNATIVES Some tools

ヘロト ヘアト ヘヨト

.⊒...>

Do you know your beta functions?

Or: how to check if Unification occurs

What about Composite Higgs (+ top)? Can we calculate?

SUSY & the ALTERNATIVES Some tools

(日)

Do you know your beta functions?

Or: how to check if Unification occurs

What about Composite Higgs (+ top)? Can we calculate?

SUSY & the ALTERNATIVES Some tools

Do you know your beta functions?

Or: how to check if Unification occurs

Compositeness vs Unif

Leading order UNKNOWN

Our ignorance is partial

$$\frac{d}{d\ln\mu}\left(\frac{1}{\alpha_{i}}\right) = \frac{b_{i}^{elem}}{2\pi} + \frac{b_{i}^{comp}}{2\pi}$$

elementary contribution is KNOWN

< □ > < 同 > < 三

SUSY & the ALTERNATIVES Some tools

Do you know your beta functions?

Or: how to check if Unification occurs

Notice: the differential running determines unification¹.

¹provided no Landau pole is hit

Alvise Varagnolo

Compo GUTs

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

SUSY & the ALTERNATIVES Some tools

Do you know your beta functions?

Or: how to check if Unification occurs

Notice: the differential running determines unification¹. A good measure: $R \equiv (b_1 - b_2)/(b_2 - b_3)$. Numerically, we have: $R_{exp} = 1.395 \pm 0.015$ vs $R_{SM}^{th} \simeq 1.9$ vs $R_{MSSM}^{th} = 1.4$ vs ??

¹provided no Landau pole is hit

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

SUSY & the ALTERNATIVES Some tools

Composite Higgs

New Strong Dynamics triggers G/K global symm breaking, NGBs π s.t. $\pi \supset H$, with σ -model scale f@ Low E: $\mathcal{L} = \mathcal{L}_{elementary}^{G_{SM}} + \mathcal{L}_{composite}^{G_{SM}} + \mathcal{L}_{mixing}^{G_{SM}}$ The mixing term will generate (CW) a $V_{eff}(\pi) \neq 0$. Fine Tuning measure: $\xi = v^2/f^2$. Resonances @ scale $m_{\rho} \sim \text{few } TeV$, inter-compo coupling: $g_{\rho} = m_{\rho}/f$, $g_{elem} \leq g_{\rho} \leq 4\pi$

Composite Top

A closer look: $\mathcal{L}_{mixing}^{G_{SM}} = \lambda_{\psi_L} \overline{\psi_L} \mathcal{O}_{\psi_L} + \lambda_{\psi_R} \overline{\psi_R} \mathcal{O}_{\psi_R} + g_i A_{i\mu} \mathcal{J}^{\mu}$ Yukawa: $y_{\psi} \simeq \lambda_{\psi_L} \lambda_{\psi_R} / g_{\rho} \rightarrow$ top mostly/totally composite. Must choose t_R , otherwise big troubles^a with $Zb\bar{b}$ Also: $\hat{T} \simeq v^2 / f^2 \rightarrow$ Better impose Custodial Symmetry $(SU(2)_L \times SU(2)_R)$ on the whole Strong Sector

^aCan cure this by extending CS with *LR* parity. Check r-h coupling!

The idea, and real life Our pNGBs, our Exotics and the EWPTs

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Motivations and Intro SUSY & the ALTERNATIVES Same tasks

Some tools

2 Model Building

- The idea, and real life
- Our pNGBs, our Exotics and the EWPTs
- 3 Some phenomenology
 - Some doubts
 - Some hope

The idea, and real life Our pNGBs, our Exotics and the EWPTs

<ロ> <四> <四> <四> <三</td>

A way out

 $G/K \rightarrow$ Composite stuff (i.e. Higgs, top, heavy resonances) Agashe, Contino, Sundrum (2005) realized that if $G_{SM} \subset G$ simple \Rightarrow contribution of strong sector to b_i s above compositeness scale becomes universal! ($b_i^{compo} \rightarrow b^{compo}$) Then $b_i - b_j = b_i^{elem} - b_j^{elem}$ and we can compute! (modulo small corrections from Low E region, if *K* is not simple) Equivalently: we subtract the contributions of composite modes to the differential running, i.e.

 $R(SM) \rightarrow R(SM \setminus \{\text{Composite stuff}\})$

We are thus in a position to investigate Composite Unification.

The idea, and real life Our pNGBs, our Exotics and the EWPTs

ヘロン 人間 とくほ とくほ とう

A way out

 $G/K \rightarrow$ Composite stuff (i.e. Higgs, top, heavy resonances) Agashe, Contino, Sundrum (2005) realized that if $G_{SM} \subset G$ simple \Rightarrow contribution of strong sector to b_i s above compositeness scale becomes universal! ($b_i^{compo} \rightarrow b^{compo}$) Then $b_i - b_j = b_i^{elem} - b_j^{elem}$ and we can compute! (modulo small corrections from Low E region, if *K* is not simple) Equivalently: we subtract the contributions of composite modes to the differential running, i.e.

$$R(SM)
ightarrow R(SM \setminus \{\text{Composite stuff}\})$$

We are thus in a position to investigate Composite Unification. But careful: $b^{compo} < 10$, or you hit a Landau pole before M_{GUT} !

The idea, and real life Our pNGBs, our Exotics and the EWPTs

ヘロン 人間 とくほ とくほ とう

1

Requirements on G/K

(A) $G/K \rightarrow NGBs$ contain the Higgs, or a $(2,2)_0$ repr of $SU(2)_L \times SU(2)_R \times U(1)'$ (B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$ (C) G a simple group s.t. $G_{SM} \subset G$

 $A + B + C \Rightarrow \operatorname{rank}(G) \ge 5$: G = SO(10)? Life's not that easy...

Minimal rank sol'ns:

G ightarrow K	R _{NGB}
SO(11) ightarrow SO(7) imes SU(2) imes SU(2)	(7, 2, 2)
Sp(10) ightarrow Sp(8) imes SU(2)	(8, 2)
SO(11) ightarrow SO(10)	10

The idea, and real life Our pNGBs, our Exotics and the EWPTs

ヘロン 人間 とくほ とくほ とう

1

Requirements on G/K

(A) $G/K \rightarrow$ NGBs contain the Higgs, or a (2,2)₀ repr of $SU(2)_L \times SU(2)_R \times U(1)'$

- (B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$
- (C) G a simple group s.t. $G_{SM} \subset G$
- $A + B + C \Rightarrow \operatorname{rank}(G) \ge 5$: G = SO(10)? Life's not that easy...

Minimal rank sol'ns:

G ightarrow K	R _{NGB}
SO(11) ightarrow SO(7) imes SU(2) imes SU(2)	(7, 2, 2)
Sp(10) ightarrow Sp(8) imes SU(2)	(8, 2)
SO(11) ightarrow SO(10)	10

The idea, and real life Our pNGBs, our Exotics and the EWPTs

<ロ> <四> <四> <四> <三</td>

Requirements on G/K

(A) $G/K \rightarrow$ NGBs contain the Higgs, or a $(2,2)_0$ repr of $SU(2)_L \times SU(2)_R \times U(1)'$

- (B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$
- (C) G a simple group s.t. $G_{SM} \subset G$

 $A + B + C \Rightarrow \operatorname{rank}(G) \ge 5$: G = SO(10)? Life's not that easy... Simplest Sol'n:

G ightarrow K	R _{NGB}
SO(11) ightarrow SO(10)	10

Repr of 10 under $K_{min} = (1, 2, 2)_0 + (3, 1, 1)_{-2/3} + (\bar{3}, 1, 1)_{+2/3}$

The idea, and real life Our pNGBs, our Exotics and the EWPTs

ヘロト 人間 とくほとく ほとう

Requirements on G/K

(A) $G/K \rightarrow$ NGBs contain the Higgs, or a (2,2)₀ repr of $SU(2)_L \times SU(2)_R \times U(1)'$

- (B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$
- (C) G a simple group s.t. $G_{SM} \subset G$

 $A + B + C \Rightarrow \operatorname{rank}(G) \ge 5$: G = SO(10)? Life's not that easy... Simplest Sol'n:

G ightarrow K	R _{NGB}
SO(11) ightarrow SO(10)	10

Repr of **10** under $K_{min} = (1, 2, 2)_0 + (3, 1, 1)_{-2/3} + (\bar{3}, 1, 1)_{+2/3}$ Need to define hypercharge & to impose extra $U(1)_B \times U(1)_L$

The idea, and real life Our pNGBs, our Exotics and the EWPTs

ヘロト 人間 ト ヘヨト ヘヨト

Requirements on G/K

(A) $G/K \rightarrow NGBs$ contain the Higgs, or a $(2, 2)_0$ repr of $SU(2)_L \times SU(2)_R \times U(1)'$ (B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$ (C) G a simple group s.t. $G_{SM} \subset G$ $A + B + C \Rightarrow \operatorname{rank}(G) > 5: G = SO(10)$? Life's not that easy...

Simplest Sol'n:

${old G} ightarrow {old K}$	R _{NGB}
SO(11) ightarrow SO(10)	10

Repr of **10** under $K_{min} = (\mathbf{1}, \mathbf{2}, \mathbf{2})_{\mathbf{0}} + (\mathbf{3}, \mathbf{1}, \mathbf{1})_{-\mathbf{2}/\mathbf{3}} + (\mathbf{\overline{3}}, \mathbf{1}, \mathbf{1})_{+\mathbf{2}/\mathbf{3}}$ Need to define hypercharge & to impose extra $U(1)_B \times U(1)_L$ To fit fermion Y & to prevent p-decay and too large ν masses

The idea, and real life Our pNGBs, our Exotics and the EWPTs

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

What about fermions?

Which repr of SO(10) contains t_R ? Obvious² answer is: $\overline{16} \supset t_R$, as typical in canonical GUTs. Then, however, t_R comes with a plethora of new composite massless (before EWSB) states: exotics $\overline{16} = (x_R, t_R)$. In order to

- avoid experimental constraints on masses of extra fermions
- cancel anomalies

we need to pair them to a $16 \setminus t'_L = x_L$ of **elementary** fields! Consequence for unification: $R \to R(SM \setminus \{H, t_R, t_R^c\})$ Bottom line: for *K* simple unification is guaranteed. Numerically: $R \simeq 1.45$ vs. $R_{exp} = 1.395$ vs. $R_{SUSY} = 1.4$ Higher orders: **hard** to evaluate, very model dependent.

²But one can engineer, e.g., $t_R \subset \mathbf{10}$

The idea, and real life Our pNGBs, our Exotics and the EWPTs

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

H & T & *x*s

The masses are predicted as follows:

$$m_h^2 \simeq N_x rac{\lambda_x^4}{16\pi^2} v^2 \simeq (440 \text{GeV})^2 \left(\lambda_x/2.5\right)^4 \; ,$$

$$m_T{}^2 \simeq N_g rac{g_s^2}{16\pi^2} m_
ho^2 \simeq (1.2 \, TeV)^2 \, (m_
ho/4.5 \, TeV)^2 \; ,$$

 $m_x \simeq \lambda_x f \simeq 1.9 \text{TeV} (\lambda_x/2.5) (f/750 \text{GeV})$.

The idea, and real life Our pNGBs, our Exotics and the EWPTs

イロト 不得 とくほ とくほとう

1

H & T & *x*s

The masses are predicted as follows:

$$m_h^2 \simeq N_x rac{\lambda_x^4}{16\pi^2} v^2 \simeq (440 \text{GeV})^2 \left(\lambda_x/2.5\right)^4 \; ,$$

$$m_T^2 \simeq N_g rac{g_s^2}{16\pi^2} m_
ho^2 \simeq (1.2 \, TeV)^2 \, (m_
ho/4.5 \, TeV)^2 \; ,$$

 $m_x \simeq \lambda_x f \simeq 1.9 \text{TeV} (\lambda_x/2.5) (f/750 \text{GeV})$.

Important #1: couplings of pNGBs ($\supset H$) come with factor $\sqrt{1 - v^2/f^2}$. Numerically, $f \simeq 750 \text{ GeV}$ easily realized (in region allowed by EWPTs) \Rightarrow factor 0.95 (lower possible).

The idea, and real life Our pNGBs, our Exotics and the EWPTs

H & T & *x*s

The masses are predicted as follows:

$$m_h^2 \simeq N_x rac{\lambda_x^4}{16\pi^2} v^2 \simeq (440 \text{GeV})^2 \left(\lambda_x/2.5\right)^4 \; ,$$

$$m_T{}^2 \simeq N_g rac{g_s^2}{16\pi^2} m_
ho^2 \simeq (1.2 \, TeV)^2 \, (m_
ho/4.5 \, TeV)^2 \; ,$$

 $m_x \simeq \lambda_x f \simeq 1.9 \text{TeV} (\lambda_x/2.5) (f/750 \text{GeV})$.

Important #1: couplings of pNGBs (\supset *H*) come with factor $\sqrt{1 - v^2/f^2}$. Numerically, $f \simeq 750 \text{ GeV}$ easily realized (in region allowed by EWPTs) \Rightarrow factor 0.95 (lower possible). Important #2: bound from $Zb\bar{b}$: $m_{b'} > 1.4 \text{ TeV}$. λ_x must be smaller than g_{ρ} , for V_{eff} computation to make sense.

The idea, and real life Our pNGBs, our Exotics and the EWPTs

EWPTs (warning: numbers!)

We use exact formulae for V_{eff} , m_H , $m_T \dots \Rightarrow$ numerics! But \dots

only behavior shown. However, analytic properties are there.

Some doubts Some hope

Outline

- Our pNGBs, our Exotics and the EWPTs
- Some phenomenology
 - Some doubts
 - Some hope

< ロ > < 同 > < 三 >

Some doubts Some hope

T's & Exotics' Pheno @ LHC \rightarrow to be revised!

	q^c	b'	lc	ν'	e'	Т
<i>SU</i> (3) _C	Ī	3	1	1	1	3
$SU(2)_L$	2	1	2	1	1	1
<i>U</i> (1) _Y	$-\frac{1}{6}$	$-\frac{1}{3}$	$\frac{1}{2}$	0	-1	$-\frac{1}{3}$
$U(1)_{B_E}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0
U(1) _{B1}	$-\frac{1}{3}$	$\frac{1}{3}$	1	-1	-1	$-\frac{2}{3}$

Mostly pair produced via gauge int's: @ 14 *TeV* LHC cross section \sim 0.01 (0.05) *pb* for masses \sim 1 *TeV* for coloured scalars (fermions).

Depending on *B*, lightest state can be stable (baryon triality).

Assume *T* stable. LHC produced: hadronizes $\mathcal{T}^0 = T\bar{d} \text{ or } \mathcal{T}^- = T\bar{u}$: $\mathcal{T}^0 \sim \text{missing } E_T$; $\mathcal{T}^- \sim \text{heavy } \mu$ (both should come with pairs of *t*'s or *b*'s)

If *N* (mix of l^c and ν') stable:

missing E_T + (t's & b's pairs) *N* can be DM candidate, but need to be mostly ν' to avoid direct detection & relic density (\neq SUSY annihil'n).

Some doubts Some hope

Higgs: surviving @ LHC

CMS 22/08: excluded SM Higgs for 140 $GeV \le m_H \le 440 GeV$

The good properties of *our* Higgs:

- it's typically heavy (from 400 GeV upwards)
- couplings & cross sections reduced wrt SM Higgs',

Summary

It's been known for some years that it is possible to investigate Unification in Composite H & t scenarios, thus combining this elegant solution to the HP and the properties of GUTs. Now:

イロト イポト イヨト イヨト

Summary

It's been known for some years that it is possible to investigate Unification in Composite H & t scenarios, thus combining this elegant solution to the HP and the properties of GUTs. Now:

- $\bullet \ explicit$ (albeit not UV-complete) model $\rightarrow predictions$
- *H* and *t_R* bring along partners lighter than compositeness scale (comparts), with fixed QN (modulo *B*)
- amount of FT is perfectly acceptable, if masses of comparts are $\leq 1 2$ TeV
- lightest of comparts might be stable; production @ LHC might be significant

ヘロト ヘアト ヘビト ヘビト

1

Summary

It's been known for some years that it is possible to investigate Unification in Composite H & t scenarios, thus combining this elegant solution to the HP and the properties of GUTs. Now:

- explicit (albeit not UV-complete) model \rightarrow predictions
- *H* and *t_R* bring along partners lighter than compositeness scale (comparts), with fixed QN (modulo *B*)
- amount of FT is perfectly acceptable, if masses of comparts are $\leq 1 2$ TeV
- lightest of comparts might be stable; production @ LHC might be significant (problem?)

to do list

- check attentively LHC signals: do we survive? more FT?
- attempt the construction of UV-completion

Until next time...

Alvise Varagnolo Compo GUTs

∃ 𝒫𝔄𝔄