(Light) *t*-channel top physics of top asymmetry

Sunghoon Jung

University of Michigan/University of Chicago

August 29, 2011 @ SUSY

Based on works with H.Murayama, A.Pierce, J.Wells. Refs: [1108.1802] and [0907.4112], [1103.4835], [1104.3139].

What is *t*-channel top physics

- A class of new physics that produces top pairs at hadron colliders dominantly through *t*-channel exchange of new particles V'.
- Motivation is provided by anomalously large top quark forward-backward asymmetry (*A_{FB}*) measured at the Tevatron.
- Most *t*-channel physics models predict early LHC signatures.

- Summary of A_{FB} data
- Models/characteristic pheno of *t*-channel top physics
- Emphasis on light V' models: comparison and contrast with heavier V'
 - Relevance of $m_{t\bar{t}}$?
 - Single top phenomena
- Search strategy: Hadronic resonance in association with single top

Top quark forward-backward asymmetry

$$A_{FB} = \frac{N_t(p) - N_t(\bar{p})}{N_t(p) + N_t(\bar{p})},$$

 $N_i(j)$ is the number of i in the direction of j

(All these are independently more than 2-sigma away from zero.)

CDF note 10436, 9724 D0 1107.4995

Measurements history

 $A_{FB} = 0.20 \pm 0.11^{stat} \pm 0.047^{sys} (0.695 f b^{-1} \text{ CDF T.Schwarz Thesis})$

 $A_{FB} = 0.19 \pm 0.09^{stat} \pm 0.02^{sys} (0.9 f b^{-1} \text{ D}0 \ 0712.0851)$

 $A_{FB} = 0.17 \pm 0.07^{stat} \pm 0.04^{sys} (1.9 f b^{-1} \text{ CDF } 0806.2472)$

 $A_{FB} = 0.193 \pm 0.065^{stat} \pm 0.024^{sys} (3.2fb^{-1} \text{ CDF note } 9724, \text{ March } 2009)$

 $A_{FB} = 0.08 \pm 0.04^{stat} \pm 0.01^{sys} (4.3 fb^{-1} \text{ D0 note } 6062, \text{ July } 2010)$

Over a few years, Afb has been consistently large and ~2 sigma away from zero, both at CDF and D0.

What do these imply for SM?

Standard Model prediction

SM prediction is too small to account for data, and is ~2 sigma below data.

Increase at high-energy

- Increasing behavior is natural.
- CDF and D0 observed it.
- Rapid increase may further imply new physics contribution at highenergy region.

A_{FB}(M_{ttbar}<450GeV) --> A_{FB}(M_{ttbar}>450GeV) -2.2 +/- 4.3 % --> 26.6 +/- 6.2 % (CDF) 7.8 +/- 4.8 % --> 11.5 +/- 6.0 % (D0) (1.3 +/- 0.6 % --> 4.3 +/- 1.3 % (SM))

LHC asymmetry

More directly correlated with Tevatron Afb, but hard to measure.

With respect to ttbar boost direction,

[1103.4835] SJ, A.Pierce, J.Wells

$$A_{boost} = \frac{N(a > 0) - N(a < 0)}{N(a > 0) + N(a < 0)}, \qquad a \equiv (y_t + y_{\bar{t}})(y_t - y_{\bar{t}}),$$

A_{boost}	no cuts (unfolded)	after cuts (background subtracted)
Model A	4.5%	2.5%
CMS [4]	$-1.3\pm3.8\%$	$-0.7 \pm (\lesssim 3.8)\%$
\mathbf{SM}	$1.1\pm0.1\%$	_

-

• $\sim 2 \sigma$ deviations are observed in several independent measurements.

But, not just because of the deviation ...

- *A_{FB}* is a third generation observable that is expected to be somewhat special in many BSM.
- A_{FB} results from small higher-order effects in the SM.
 - is sensitive to LO new physics contribution,
 - helps/facilitates better understanding of QCD.

Model independent best fit

(Ref: B.Grinstein et.al. [1102.3374])

- Interference with QCD is preferred.
- New physics possibilities: *s*-channel color-octet and *t*-channel exchange can interfere with QCD.

Models of t-channel physics

$$\mathcal{L}_{eff} = ig_X \, \bar{t} \gamma^\mu P_R \, q \, V'_\mu$$

- Abelian Z' with Z'-u-t coupling
- W' with W'-d-t coupling from non-Abelian left-right asymmetric model
- W' with W'-u-t coupling from non-Abelian horizontal symmetry under with (u_R,t_R) forms a doublet
- Scalar V' in various color representations
-

Models of t-channel physics

Models of t-channel physics

- Abelian Z' with Z'-u-t coupling
- W' with W'-d-t coupling from non-Abelian left-right asymmetric model
- W' with W'-u-t coupling from non-Abelian horizontal symmetry under with (u_R,t_R) forms a doublet
- Scalar V' in various color representations

•

For the purpose of qualitative discussion, free parameters are

 $\{M_{V'}\,,\,\alpha_X\}.$

Favored parameter space:

Important observables are:

- invariant mass distribution of top pair
- total top pair production cross section
- tj resonance of V'
- ...

generically arising from:

- t-channel scattering Rutherford enhancement
- direct production of V' from gu -> tV' (-> ttbar j)

Important observables are:

Important observables are:

- invariant mass distribution of top pair
- total top pair production cross section
- tj resonance of V'
- ...

generically arising from:

- t-channel scattering Rutherford enhancement
- direct production of V' from gu -> tV' (-> ttbar j)

Important observables are:

- invariant mass distribution of top pair
- total top pair production cross section
- tj resonance of V'
- ...

generically arising from:

- t-channel scattering Rutherford enhancement
- direct production of V' from gu -> tV' (-> ttbar j)

Now, light *t*-channel V' $(M_{V'} \lesssim M_{top})$...

글 > 글

Light *t*-channel mediator V'

Refs: [0907.4112], [1104.3139] SJ et al.

We add a new free parameter $\epsilon \ll 1$:

$$\{M_{V'}, \alpha_X, \epsilon\}$$
, $\left(\mathcal{L}_{eff} \ni i\epsilon g_X \sum_{i=1}^3 \bar{q}_i \gamma^{\mu} P_R q_i V'_{\mu}\right)$

프 > 프

Refs: [0907.4112], [1104.3139] SJ et al.

We add a new free parameter $\epsilon \ll 1$:

$$\{M_{V'}, \alpha_X, \epsilon\} \quad , \quad \left(\mathcal{L}_{eff} \ni i\epsilon g_X \sum_{i=1}^3 \bar{q}_i \gamma^{\mu} P_R q_i V'_{\mu}\right)$$

Drastically different pheno arises:

- New decay mode $V' \rightarrow jj$ dominates over $V' \rightarrow tj$.
- $tV' \rightarrow tjj$ would contribute to single top sample rather than top pair.
- Important generic signatures ($\sigma(t\bar{t}), tj$ resonance) discussed previously do not arise.

3

What about

- $m_{t\bar{t}}$?
- single top data?

< 注→

æ

Relevance of $m_{t\bar{t}}$?

Refs: [1108.1802] SJ, A.Pierce, J.Wells

- Model B predicts abundant $\sigma(gu \rightarrow tV' \rightarrow t\bar{t}j) \sim 20pb$ while Model A does not.
- True $t\bar{t}$ and tV' have different distributions.

This faking $t\bar{t}$ contribution shows up as an overall excess in every bins of Model B.

3

Relevance of $m_{t\bar{t}}$?

Refs: [1108.1802] SJ, A.Pierce, J.Wells

Ref: [1103.4834] SJ, A.Pierce, J.Wells, [1103.3501] M.Gresham, I.Kim, K.Zurek

Unfolding procedure is to correct selection acceptances, detector effects, etc, to facilitate comparison with theory predictions.

However, acceptances can be very different due to very forward top quarks:

$M_{t\bar{t}}$ (GeV)	350-500	500-600	600-700	700-800	800-1400
SM	7.8 %	7.6	7.8	8.0	8.5
t-channel V'	7.6 %	6.7	5.9	5.0	4.0
color octet	7.8 %	7.8	7.9	8.0	8.8

Table: Acceptances under CDF cuts used for $d\sigma/dM_{t\bar{t}}$.

Model independent CDF unfolding *underestimates* t-channel effects, especially at high-energy region (with a lighter V').

Demonstration: theory vs. MC with unfolding.

Our parton-level methodology: Derive SM acceptances. \rightarrow Form a unfolding matrix. \rightarrow Apply the same SM matrix to every physics samples.

([1103.4834] SJ, A.Pierce, J.Wells)

This effect is greater for a lighter V', i.e. lower acceptances.

Relevance of $m_{t\bar{t}}$?

Refs: [1108.1802] SJ, A.Pierce, J.Wells

Relevance of $m_{t\bar{t}}$?

Refs: [1108.1802] SJ, A.Pierce, J.Wells

NB: Another issue about inefficient $m_{t\bar{t}}$ reconstruction is discussed in paper and suppl material.

Light V' in current analysis of Single top

- Single top productions:
 - SM single top : dominantly from ub
 ightarrow dt (
 ightarrow dbW).
 - Light t-channel : $gu \rightarrow tV' (\rightarrow bWjj)$.

 $\sigma({
m SM~single~top}) \sim \sigma(tV') \sim 60 pb ~<~ \sigma(tar{t}) \sim 160 pb$

- Cut based analysis:
 - SM analysis is usually optimized in W + 2j topology, while new physics has W + 3j topology.
- Distributions:
 - $H_T(j)$: As V' is light, new $H_T(j)$ distribution does not peak at high value above top pair contribution.

- ▲ 글 ▶ - 글

Light V' in current analysis of Single top

- Single top productions:
 - SM single top : dominantly from ub
 ightarrow dt (
 ightarrow dbW).
 - Light t-channel : $gu \rightarrow tV' (\rightarrow bWjj)$.

 $\sigma({
m SM~single~top}) \sim \sigma(tV') \sim 60 pb ~<~\sigma(tar{t}) \sim 160 pb$

- Cut based analysis:
 - SM analysis is usually optimized in W + 2j topology, while new physics has W + 3j topology.
- Distributions:
 - $H_T(j)$: As V' is light, new $H_T(j)$ distribution does not peak at high value above top pair contribution.

Current SM single top analysis is not that sensitive to light V' model.

Search strategy: hadronic resonance associated with single top

Refs: [1108.1802] SJ et al.

- Signal topology is "3j (1b-tagged) +1 ℓ + missing energy".
- Two untagged jets are used to calculate *m_{ij}* distribution.

Search strategy: hadronic resonance associated with single top

At LHC7,

Discovery cuts are: $p_T(leadj) > 90 \text{ GeV}$, $H_T(j) > 200 \text{ GeV}$, $\Delta R(j,j) < \pi$ and $135 \le m_{jj} \le 175 \text{ GeV}$ in addition to basic single top selections.

Search strategy: hadronic resonance associated with single top

At Tevatron,

backgrounds	After all cuts	backgrounds	After all cuts
tt	16.7 fb	W+j	8.5 fb
Wbb	2.8 fb	Single top	1.3 fb
V' signal	11.2 fb		
S/B	0.35	S/\sqrt{B}	2.0 $\sqrt{\mathcal{L}/1 f b^{-1}}$

If this optimized analysis is carried out and systematics are under control, we can tell light V' *t*-channel models even with current Tevatron/LHC data.

Complementary: Single lepton charge asymmetry

At the LHC, $gu \to tV'$ is more abundant than $g\bar{u} \to \bar{t}V'^*$ (with $V' \to jj$). $A_C \equiv \frac{N(1\ell^+X) - N(1\ell^-X)}{N(1\ell^+X) + N(1\ell^-X)}$

backgrounds	ATLAS total rate	A_C^ℓ
tī	1847 events	0
W + j	1930 events	0.2
Single top	385 events	0.3
others	668 events	0
tV' (Model A)	780 events	0.75
Total (SM only)	4830 events	$0.10\pm0.014(stat)$
Total (Model A)	5610 events	$0.19\pm0.013(stat)$

- The persistence of A_{FB} anomaly begs for a cross check.
- Light *t*-channel model remains a leading explanation.
- *m_{tt̄}* might not be the first place to look for it (unlike other ideas, unlike general expectations).
- Search for a *jj* resonance with single top is a definitive signal, discovering or refuting this model.