Grand Unification and Sfermion Mass Spectroscopy for the Light Generations

A.P. Morais¹ D.J. Miller¹ P.N. Pandita²

¹School of Physics and Astronomy University of Glasgow Glasgow G11 8QQ, United Kingdom

> ²Department of Physics North Eastern Hill University Shillong 793 022, India

September 1, 2011

Morais, Miller, Pandita Grand Unification and Sfermion Mass Spectroscopy for the Light Generation

Outline

Introduction First and Second Generation Sfermion Masses E_6 SSM First and Second Generation Sfermion Masses Sum Rules Sum Rules Summary and Conclusions

- Pirst and Second Generation Sfermion Masses
- E₆SSM First and Second Generation Sfermion Masses
- 4 Sum Rules
- Summary and Conclusions

 $\begin{array}{c} & \text{Outline} \\ \text{First and Second Generation Sfermion Masses} \\ E_{6}SSM First and Second Generation Sfermion Masses \\ & \text{Sum Rules} \\ & \text{Summary and Conclusions} \end{array}$

he Idea of Grand Unification

Introduction: The Idea of Grand Unification

- The Standard Model of Strong and Electroweak interactions is described by the gauge group G_{SM} = SU(3)_c ⊗ SU(2)_L ⊗ U(1)_Y
- The main idea is to embed G_{SM} into a larger simple group
- We will consider SU(5), SO(10) and E_6
- As an example we will also look at the *E*₆SSM (David's Talk)

One-Loop RGEs Solution of the RGEs Universal Boundary Conditions SU(5) Boundary Conditions SO(10) Boundary Conditions E₆ Boundary Conditions

First and Second Generation Masses: 1-Loop RGEs

Squark and Slepton Soft Masses RGE $16\pi^2 \frac{dm_{\tilde{Q}_L}^2}{dt} = -\frac{32}{3}g_3^2M_3^2 - 6g_2^2M_2^2 - \frac{2}{15}g_1^2M_1^2 + \frac{1}{5}g_1^2S$ $16\pi^2 \frac{dm_{\tilde{u}_R}^2}{dt} = -\frac{32}{3}g_3^2M_3^2 - \frac{32}{15}g_1^2M_1^2 - \frac{4}{5}g_1^2S$ $16\pi^2 \frac{dm_{\tilde{d}_R}^2}{dt} = -\frac{32}{3}g_3^2M_3^2 - \frac{8}{15}g_1^2M_1^2 + \frac{2}{5}g_1^2S$ $16\pi^2 \frac{dm_{\tilde{d}_R}^2}{dt} = -6g_2^2M_2^2 - \frac{6}{5}g_1^2M_1^2 - \frac{3}{5}g_1^2S$ $16\pi^2 \frac{dm_{\tilde{d}_R}^2}{dt} = -\frac{24}{5}g_1^2M_1^2 + \frac{6}{5}g_1^2S$

- $\bullet\,$ No Yukawa and trilinear couplings contribution for the light generations $\to\,$ possible to solve analyticaly
- $t \equiv \log(Q/Q_0), M_{1,2,3}$ running gaugino masses and $g_{1,2,3}$ are de usual G_{SM} gauge couplings
- S is a D-term contribution

•
$$S \equiv Tr(Ym^2) = m_{H_u}^2 - m_{H_d}^2 + \sum_{families} \left(m_{\bar{Q}_L}^2 - 2m_{\bar{u}_R}^2 + m_{\bar{d}_R}^2 - m_{\bar{L}_L}^2 + m_{\bar{e}_R}^2 \right)$$

• $\frac{dS}{dt} = \frac{66}{5} \frac{\alpha_i}{4\pi} S \Rightarrow S(t) = S(t_G) \frac{\alpha_i(t)}{\alpha_i(t_G)}$

[Ananthanarayan, Pandita, 2005]

One-Loop RGEs Solution of the RGEs Universal Boundary Conditions SU(5) Boundary Conditions SO(10) Boundary Conditions E₆ Boundary Conditions

Solution of the RGEs

Squark and Slepton Running Masses $m_{\tilde{u}_{L}}^{2}(t) = m_{\tilde{Q}_{L}}^{2}(t_{G}) + C_{3} + C_{2} + \frac{1}{36}C_{1} + \Delta_{u_{L}} - \frac{1}{5}K$ $m_{\tilde{d}_{L}}^{2}(t) = m_{\tilde{Q}_{L}}^{2}(t_{G}) + C_{3} + C_{2} + \frac{1}{36}C_{1} + \Delta_{d_{L}} - \frac{1}{5}K$ $m_{\tilde{u}_{R}}^{2}(t) = m_{\tilde{u}_{R}}^{2}(t_{G}) + C_{3} + \frac{4}{9}C_{1} + \Delta_{u_{R}} + \frac{4}{5}K$ $m_{\tilde{d}_{R}}^{2}(t) = m_{\tilde{d}_{R}}^{2}(t_{G}) + C_{3} + \frac{1}{9}C_{1} + \Delta_{d_{R}} - \frac{2}{5}K$ $m_{\tilde{e}_{L}}^{2}(t) = m_{\tilde{L}_{L}}^{2}(t_{G}) + C_{2} + \frac{1}{4}C_{1} + \Delta_{e_{L}} + \frac{3}{5}K$ $m_{\tilde{e}_{L}}^{2}(t) = m_{\tilde{L}_{L}}^{2}(t_{G}) + C_{2} + \frac{1}{4}C_{1} + \Delta_{v_{L}} + \frac{3}{5}K$ $m_{\tilde{e}_{R}}^{2}(t) = m_{\tilde{e}_{R}}^{2}(t_{G}) + C_{1} + \Delta_{e_{R}} - \frac{6}{5}K$

•
$$C_i(t) = M_i^2(t_G) \left[A_i \frac{\alpha_i^2(t_G) - \alpha_i^2(t)}{\alpha_i^2(t_G)} \right] = M_i^2(t_G) \overline{c}_i(t), i = 1, 2, 3$$
 [Ananthanarayan, Pandita, 2007]
• $K(t) = \frac{1}{2b_1} S(t_G) \left(1 - \frac{\alpha_1(t)}{\alpha_1(t_G)} \right)$
• $\Delta_{\phi} = M_Z^2(T_{3\phi} - Q_{\phi} \sin^2 \theta_W) \cos 2\beta$
• $SU(2)_L \otimes U(1)_Y \to U(1)_{em}$ D-term

One-Loop RGEs Solution of the RGEs Universal Boundary Conditions SU(5) Boundary Conditions SO(10) Boundary Conditions E₆ Boundary Conditions

Universal Boundary Conditions

- Common scalar mass $m^2_{\tilde{Q}_L}(t_G) = m^2_{\tilde{u}_R}(t_G) = m^2_{\tilde{d}_R}(t_G) = m^2_{\tilde{L}_L}(t_G) = m^2_{\tilde{e}_R}(t_G) = m^2_0$
- $m_{H_u}^2 = m_{H_d}^2$
- Common gaugino mass $M_1^2(t_G) = M_2^2(t_G) = M_3^2(t_G) = M_{1/2}^2$
- Since $S(t_G) = 0$, then S(t) is identically 0 at all scales, hence K = 0
- We are left with three unknowns: m_0 , $M_{1/2}$ and $\cos 2\beta$
 - Can be determined by measuring three sfermion masses, eg. ũ_L, d_L and e_R

$$\begin{pmatrix} M_{\tilde{u}_L}^2 \\ M_{\tilde{d}_L}^2 \\ M_{\tilde{e}_R}^2 \end{pmatrix} = \begin{pmatrix} 1 & c_{\tilde{u}_L} & \delta_{\tilde{u}_L} \\ 1 & c_{\tilde{d}_L} & \delta_{\tilde{d}_L} \\ 1 & c_{\tilde{e}_R} & \delta_{\tilde{e}_R} \end{pmatrix} \begin{pmatrix} m_0^2 \\ M_{1/2}^2 \\ \cos 2\beta \end{pmatrix}$$

• $\Delta_{\phi} \equiv \delta_{\phi} \cos 2\beta$

- $c_{\tilde{u}_L} \equiv \bar{c}_3(M_{\tilde{u}_L}) + \bar{c}_2(M_{\tilde{u}_L}) + \frac{1}{36}\bar{c}_1(M_{\tilde{u}_L})$
- $c_{\tilde{d}_L} \equiv \overline{c}_3(M_{\tilde{d}_L}) + \overline{c}_2(M_{\tilde{d}_L}) + \frac{1}{36}\overline{c}_1(M_{\tilde{d}_L})$ • $c_{\tilde{u}_L} \equiv \overline{c}_1(M_{\tilde{e}_P})$

Once m_0 , $M_{1/2}$ and $\cos 2\beta$ determined through $M_{\tilde{u}_L}$, $M_{\tilde{d}_L}$ and $M_{\tilde{e}_R}$, it is possible to obtain all the University other low scale masses

One-Loop RGEs Solution of the RGEs Universal Boundary Conditions *SU*(5) Boundary Conditions *SO*(10) Boundary Conditions *E*₆ Boundary Conditions

SU(5) Boundary Conditions

Common m_{10} for matter in a 10

$$m_{\tilde{Q}_L}^2(t_G) = m_{\tilde{u}_R}^2(t_G) = m_{\tilde{e}_R}^2(t_G) = m_{10}^2$$

Common gaugino mass $M_{1/2}$

$$M_1^2(t_G) = M_2^2(t_G) = M_3^2(t_G) = M_{1/2}^2$$

Common
$$m_{\overline{5}}$$
 for matter in a $\overline{5}$

$$m_{\tilde{L}_L}^2(t_G) = m_{\tilde{d}_R}^2(t_G) = m_{\overline{\mathbf{5}}}^2$$

Higgs soft masses unrelated

$$m^2_{H_u}(t_G) = m^2_{{f 5}'} \ {
m and} \ m^2_{H_d}(t_G) = m^2_{{f \overline 5}'}$$

•
$$S(t_G) = m_{\mathbf{5}'}^2 - m_{\mathbf{5}'}^2 \Rightarrow K \neq 0$$

• Five unkowns: $m_{\overline{5}}$, m_{10} , $M_{1/2}$, $\cos 2\beta$ and K

Can be determined by measuring five sfermion masses, eg. ũ_L, d̃_L, ẽ_R, ũ_R and d̃_R

$$\begin{pmatrix} M_{\tilde{u}_L}^2 \\ M_{\tilde{d}_L}^2 \\ M_{\tilde{d}_R}^2 \\ M_{\tilde{d}_R}^2 \\ M_{\tilde{d}_R}^2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & c_{\tilde{u}_L} & \delta_{\tilde{u}_L} & -\frac{1}{5} \\ 0 & 1 & c_{\tilde{\ell}_R} & \delta_{\tilde{\ell}_R} & -\frac{6}{5} \\ 0 & 1 & c_{\tilde{u}_R} & \delta_{\tilde{u}_R} & \frac{4}{5} \\ 1 & 0 & c_{\tilde{d}_R} & \delta_{\tilde{d}_R} & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} m_{\tilde{z}}^2 \\ m_{10}^2 \\ M_{1/2}^2 \\ \cos 2\beta \\ K \end{pmatrix} -$$

•
$$c_{\tilde{u}_R} \equiv \overline{c}_3(M_{\tilde{u}_R}) + \frac{4}{9}\overline{c}_1(M_{\tilde{u}_R})$$

• $c_{\tilde{d}_R} \equiv \overline{c}_3(M_{\tilde{d}_R}) + \frac{1}{9}\overline{c}_1(M_{\tilde{d}_R})$

One-Loop RGEs Solution of the RGEs Universal Boundary Conditions *SU*(5) Boundary Conditions **SO**(10) Boundary Conditions *E*₆ Boundary Conditions

SO(10) Boundary Conditions

- Breaking $SO(10) \rightarrow SU(5) \otimes U(1)_x \rightarrow G_{SM}$ the rank is reduced from 5 to 4
 - D-term contributions from the additional $U(1)_x$ broken at the high scale
 - Assuming a Higgs type mechanism: additional soft SUSY breaking terms $V_{soft} = m^2 |\Phi|^2 + \overline{m}^2 |\overline{\Phi}|^2$
 - $\Delta m_a^2 = \sum_I Q_{Ia} d_I$ with $d_I \propto (\overline{m}^2 m^2)$ [Kolda, Martin, 1995]
 - D-term contribution of the order of $(m_{soft})^2$
- Consider that the Higgs are embedded in a 10 of SO(10)

Common sfermion mass m_{16}

$$\begin{split} m^2_{\bar{Q}_L}(t_G) &= m^2_{\bar{u}_R}(t_G) = m^2_{\bar{e}_R}(t_G) = m^2_{\mathbf{16}} + g^2_{10}D \\ m^2_{\bar{L}_L}(t_G) &= m^2_{\bar{d}_R}(t_G) = m^2_{\mathbf{16}} - 3g^2_{10}D \end{split}$$

Common Higgs mass
$$m_{10}$$

 $m_{\tilde{H}_u}^2(t_G) = m_{10}^2 - 2g_{10}^2D$
 $m_{\tilde{H}_d}^2(t_G) = m_{10}^2 + 2g_{10}^2D$

•
$$S(t_G) = -4g_{10}^2 D$$

- Five unknowns: m_{16} , $g_{10}^2 D$, $M_{1/2}$, $\cos 2\beta$ and K
- Can be determined by measuring five sfermion masses, eg. ũ_L, d̃_L, ẽ_R, ũ_R and d̃_R

$$\begin{pmatrix} M_{\tilde{u}_L}^2 \\ M_{\tilde{d}_L}^2 \\ M_{\tilde{d}_R}^2 \\ M_{\tilde{d}_R}^2 \\ M_{\tilde{d}_R}^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & c_{\tilde{u}_L} & \delta_{\tilde{u}_L} & -\frac{1}{5} \\ 1 & 1 & c_{\tilde{d}_L} & \delta_{\tilde{d}_L} & -\frac{1}{5} \\ 1 & 1 & c_{\tilde{u}_R} & \delta_{\tilde{u}_R} & -\frac{6}{5} \\ 1 & 1 & c_{\tilde{u}_R} & \delta_{\tilde{u}_R} & \frac{4}{5} \\ 1 & -3 & c_{\tilde{d}_R} & \delta_{\tilde{d}_R} & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} m_{16}^2 \\ m_{12}^2 \\ \cos 2\beta \\ K \end{pmatrix}$$

• $K(t) = \frac{-4g_{10}^2D}{2b_1} \left(1 - \frac{\alpha_1(t)}{\alpha_1(t_G)}\right)$

Masses are further constrained throught this relation

More explicitly and given that $X_5 = c_{\tilde{d}_L} - c_{\tilde{e}_R} + c_{\tilde{u}_L} - c_{\tilde{u}_R}$

$$\begin{split} K &= \frac{1}{6X_{5}(\sin^{2}\theta_{W}-1)} \left[3c_{\tilde{u}_{R}}(M_{\tilde{d}_{L}}^{2}-2M_{\tilde{e}_{R}}^{2}+M_{\tilde{u}_{L}}^{2}) + 3(c_{\tilde{d}_{L}}+c_{\tilde{u}_{L}}) \left(M_{\tilde{e}_{R}}^{2}-M_{\tilde{u}_{R}}^{2}\right) \right. \\ &\left. - 3c_{\tilde{e}_{R}}(M_{\tilde{d}_{L}}^{2}+M_{\tilde{u}_{L}}^{2}-2M_{\tilde{u}_{R}}^{2}) + 2 \left(c_{\tilde{u}_{R}}(M_{\tilde{d}_{L}}^{2}+3M_{\tilde{e}_{R}}^{2}-4M_{\tilde{u}_{L}}^{2}) - c_{\tilde{d}_{L}}(4M_{\tilde{e}_{R}}^{2}-5M_{\tilde{u}_{L}}^{2}+M_{\tilde{u}_{R}}^{2}) \right. \\ &\left. + c_{\tilde{u}_{L}}(-5M_{\tilde{d}_{L}}^{2}+M_{\tilde{e}_{R}}^{2}+4M_{\tilde{u}_{R}}^{2}) + c_{\tilde{e}_{R}}(4M_{\tilde{d}_{L}}^{2}-M_{\tilde{u}_{L}}^{2}-3M_{\tilde{u}_{R}}^{2})\right) \sin^{2}\theta_{W} \right] \\ g_{10}^{2}D &= \frac{1}{20X_{5}} \left[-c_{\tilde{u}_{R}}(2M_{\tilde{d}_{L}}^{2}-5M_{\tilde{d}_{R}}^{2}+M_{\tilde{e}_{R}}^{2}+2M_{\tilde{u}_{L}}^{2}) - c_{\tilde{e}_{R}}(-3M_{\tilde{d}_{L}}^{2}+5M_{\tilde{d}_{R}}^{2}-3M_{\tilde{u}_{L}}^{2}+M_{\tilde{u}_{R}}^{2}) \right. \\ &\left. + \left(c_{\tilde{d}_{L}}+c_{\tilde{u}_{L}}\right)(5M_{\tilde{d}_{R}}^{2}-3M_{\tilde{e}_{R}}^{2}-2M_{\tilde{u}_{R}}^{2}) + 5c_{\tilde{d}_{R}}(M_{\tilde{d}_{L}}^{2}-M_{\tilde{e}_{R}}^{2}+M_{\tilde{u}_{L}}^{2}-M_{\tilde{u}_{R}}^{2}) \right] \end{split}$$

- This was obtained for a particular choice of the Higgs in a 10-plet
- If Higgs in a 120, 126 or combinations? Different constrains?

One-Loop RGEs Solution of the RGEs Universal Boundary Conditions *SU*(5) Boundary Conditions *SO*(10) Boundary Conditions *E*₆ Boundary Conditions

E_6 Boundary Conditions

- Consider the simple scenario of the direct breaking to the SM without extra matter
- Breaking $E_6 \to SO(10) \otimes U(1)_S \to SU(5) \otimes U(1)_S \otimes U(1)_X \to G_{SM}$ the rank is reduced from 6 to 4
- Two D-term contributions from the breaking of $U(1)_S$ and $U(1)_X$ at the high scale

Common scalar mass m_{27}

$$\begin{split} m^2_{\tilde{O}_L}(t_G) &= m^2_{\tilde{u}_R}(t_G) = m^2_{\tilde{e}_R}(t_G) = m^2_{27} - g^2_6 D_S + g^2_6 D_X \\ m^2_{\tilde{L}_L}(t_G) &= m^2_{\tilde{d}_R}(t_G) = m^2_{27} - g^2_6 D_S - 3g^2_6 D \\ m^2_{\tilde{H}_u}(t_G) &= m^2_{27} + 2g^2_6 D_S - 2g^2_6 D_X \\ m^2_{\tilde{H}_d}(t_G) &= m^2_{27} + 2g^2_6 D_S + 2g^2_6 D_X \end{split}$$

- $S(t_G) = -4g_6^2 D_X$
- Six unknowns: m_{27} , $g_6^2 D_S$, $g_6^2 D_X$, $M_{1/2}$, $\cos 2\beta$ and K
- The system is not invertible \rightarrow reduced to the SO(10) analysis.

Solution of the E6SSM 1-Loop RGEs

*E*₆*SSM* First and Second Generation Sfermion Masses

[King, Moretti, Nevzorov, 2005 and 2007]

- Extended $G_{SM} \otimes U(1)_N$ at the low scale
- The extra $U(1)_N$ breaks close to the EW scale by the vev of an Higgs type singlet
- Extra H' and \overline{H}' form incomplete 27' and $\overline{27}'$ (David's Talk)
- RGEs with an extra S' D-term contribution, additional fields contributing to the loops and a D-term from $U(1)_N$ breaking

Solution of the *E6SSM* 1-Loop RGEs

$$\begin{split} m^2_{\tilde{u}_L}(t) &= m^2_{\tilde{Q}_L}(t_G) + C^{E_6}_3 + C^{E_6}_2 + \frac{1}{36}C^{E_6}_1 + \frac{1}{4}C'_1 + \Delta_{u_L} - \frac{1}{5}K - \frac{1}{20}K' - g'^2_1 D \\ m^2_{\tilde{d}_L}(t) &= m^2_{\tilde{Q}_L}(t_G) + C^{E_6}_3 + C^{E_6}_2 + \frac{1}{36}C^{E_6}_1 + \frac{1}{4}C'_1 + \Delta_{d_L} - \frac{1}{5}K - \frac{1}{20}K' - g'^2_1 D \\ m^2_{\tilde{u}_R}(t) &= m^2_{\tilde{u}_R}(t_G) + C^{E_6}_3 + \frac{4}{9}C^{E_6}_1 + \frac{1}{4}C'_1 + \Delta_{u_R} + \frac{4}{5}K - \frac{1}{20}K' - g'^2_1 D \\ m^2_{\tilde{d}_R}(t) &= m^2_{\tilde{d}_R}(t_G) + C^{E_6}_3 + \frac{1}{9}C^{E_6}_1 + C'_1 + \Delta_{d_R} - \frac{2}{5}K - \frac{1}{10}K' - 2g'^2_1 D \\ m^2_{\tilde{e}_L}(t) &= m^2_{\tilde{L}_L}(t_G) + C^{E_6}_2 + \frac{1}{4}C^{E_6}_1C'_1 + \Delta_{e_L} + \frac{3}{5}K - \frac{1}{10}K' - 2g'^2_1 D \\ m^2_{\tilde{v}_L}(t) &= m^2_{\tilde{L}_L}(t_G) + C^{E_6}_2 + \frac{1}{4}C^{E_6}_1C'_1 + \Delta_{v_L} + \frac{3}{5}K - \frac{1}{10}K' - 2g'^2_1 D \\ m^2_{\tilde{v}_L}(t) &= m^2_{\tilde{L}_L}(t_G) + C^{E_6}_2 + \frac{1}{4}C^{E_6}_1C'_1 + \Delta_{v_L} + \frac{3}{5}K - \frac{1}{10}K' - 2g'^2_1 D \\ m^2_{\tilde{e}_R}(t) &= m^2_{\tilde{e}_R}(t_G) + C^{E_6}_1C'_1 + \Delta_{e_R} - \frac{6}{5}K - \frac{1}{20}K' - g'^2_1 D \end{split}$$

Solution of the E6SSM 1-Loop RGEs

- $C_i^{E_6}(t) = M_i^2(t_G) \left[A_i^{E_6} \frac{\alpha_i^2(t_G) \alpha_i^2(t)}{\alpha_i^2(t_G)} \right] = M_i^2(t_G) \overline{c}_i^{E_6}(t)$ • $D_N = \frac{1}{20} K' + g_1'^2 D$
- Common scalar mass $m_{\tilde{Q}_L}^2(t_G) = m_{\tilde{u}_R}^2(t_G) = m_{\tilde{d}_R}^2(t_G) = m_{\tilde{L}_L}^2(t_G) = m_{\tilde{e}_R}^2(t_G) = m_{27}^2$
- Five unknowns: m_{27} , D_N , $M_{1/2}$, $\cos 2\beta$ and K
- Can be determined by measuring five sfermion masses, eg. ũ_L, d̃_L, ẽ_R, ũ_R and d̃_R

$$\begin{pmatrix} M_{\tilde{u}_L}^2 \\ M_{\tilde{d}_L}^2 \\ M_{\tilde{d}_R}^2 \\ M_{\tilde{d}_R}^2 \\ M_{\tilde{d}_R}^2 \end{pmatrix} = \begin{pmatrix} 1 & c_{\tilde{u}_L} & \delta_{\tilde{u}_L} & -\frac{1}{5} & -1 \\ 1 & c_{\tilde{d}_L} & \delta_{\tilde{d}_L} & -\frac{1}{5} & -1 \\ 1 & c_{\tilde{u}_R} & \delta_{\tilde{u}_R} & -\frac{4}{5} & -2 \\ 1 & c_{\tilde{d}_R} & \delta_{\tilde{d}_R} & -\frac{2}{5} & -1 \end{pmatrix} \begin{pmatrix} m_{27}^2 \\ M_{1/2}^2 \\ \cos 2\beta \\ K \\ D_N \end{pmatrix}$$

- Note that $D = \left(Q_d^N v_d^2 + Q_u^N v_u^2 + Q_s^N s^2\right)$
- If able to measure v_d^2 , v_u^2 and s^2 independently one can determine K'

•
$$S(t_G) = -m_{H'}^2 + m_{\overline{H}'}^2$$

• $S'(t_G) = 4m_{H'}^2 - 4m_{\overline{H}'}^2$

Sum Rules

From the solution of the 1-loop RGEs, it is possible to obtain the following sum rules: [Ananthanarayan, Pandita, 2005 and 2007]

Sum rules for SU(5), SO(10) and E_6

$$\begin{split} & M_{\tilde{u}_L}^2 + M_{\tilde{d}_L}^2 - M_{\tilde{u}_R}^2 - M_{\tilde{e}_R}^2 = C_3 + 2C_2 - \frac{25}{18}C_1 = 2.18207 \ (GeV)^2 \\ & \frac{1}{2} \left(M_{\tilde{u}_L}^2 + M_{\tilde{d}_L}^2 \right) + M_{\tilde{d}_R}^2 - M_{\tilde{e}_R}^2 - \frac{1}{2} \left(M_{\tilde{e}_L}^2 + M_{\tilde{v}_L}^2 \right) = 2C_3 - \frac{10}{9}C_1 = -0.817037 \ (GeV)^2 \end{split}$$

Sum rules for the E_6SSM

$$\begin{split} M_{\tilde{u}_{L}}^{2} + M_{\tilde{d}_{L}}^{2} - M_{\tilde{u}_{R}}^{2} - M_{\tilde{e}_{R}}^{2} &= C_{3}^{E_{6}} + 2C_{2}^{E_{6}} - \frac{25}{18}C_{1}^{E_{6}} - \frac{3}{4}C_{1}' = 2.82233 \ (GeV)^{2} \\ \frac{1}{2} \left(M_{\tilde{u}_{L}}^{2} + M_{\tilde{d}_{L}}^{2} \right) + M_{\tilde{d}_{R}}^{2} - M_{\tilde{e}_{R}}^{2} - \frac{1}{2} \left(M_{\tilde{e}_{L}}^{2} + M_{\tilde{v}_{L}}^{2} \right) = 2C_{3}^{E_{6}} - \frac{10}{9}C_{1}^{E_{6}} - \frac{3}{4}C_{1}' = 4.49462 \ (GeV)^{2} \end{split}$$

• Values for $Q = 500 \ GeV$

Summary and Conclusions

- Studied the 1-loop RGEs for the sfermion masses of the light generations for *SU*(5), *SO*(10) and *E*₆ boundary conditions
- For *SO*(10) with Higgs in a 10-plet we get extra constrains on the low energy masses
- Obained sum rules for different GUT models
- Parameters obtained from measurement of first and second generations low scale masses will be very useful for the study of the third generation

- SO(10) ⊗ U(1)_S is a maximal subalgebra of E₆
- One can identify $m_{16}^2 = m_{27}^2 g_6^2 D_S$ and $m_{10}^2 = m_{27}^2 + 2g_6^2 D_S$
- Since we only know m_{16}^2 from SO(10) calculations \rightarrow not possible to determine m_{27}^2 and $g_6^2 D_S$ alone
- Analysis reduced to the case of SO(10)
- Values for $Q = 500 \ GeV$

•
$$C_1 = 0.177807, C_2 = 1.36938, C_3 = -0.309737$$

•
$$C_1^{E_6} = 0.122243, C_2^{E_6} = 0.342345, C_3^{E_6} = 2.32302, C_1' = 0.0207902$$

