Superconformal Operator Product Expansion and General Gauge Mediation

Jean-François Fortin

Department of Physics, University of California, San Diego
La Jolla, CA
August 28-September 02, 2011
Supersymmetry 2011
based on
arXiv:1107.1721 [hep-th] (JFF, K. Intriligator, A. Stergiou), work in progress (JFF, K. Intriligator, A. Stergiou)

Outline

(1) Motivation

- (S)CFTs and real world
- Applications
(2) SOPE in SCFTs
- Operator product expansion: Review
- Superconformal operator product expansion
- Current-current SOPE
- Superconformal blocks
(3) SOPE and GGM
- General gauge mediation: Overview
- Cross sections
- Visible sector SUSY breaking masses
(4) Conclusion
- Features and applications

(S)CFTs, (S)OPE and real world

- Why (S)CFTs \Rightarrow (S)CFTs are generic
- $\mathcal{N}=4$ SYM
- $\mathcal{N}=1$ SQCD in conformal window Seiberg (1994)
- Non-Lagrangian candidates e.g. Benini, Tachikawa, Wecht (2009)
- Why (S)OPE \Rightarrow (S)CFT observables
- Spectrum of operators and dimensions
- (S)OPE coefficients
- Non-local Wilson loops
\Rightarrow Highly constrained

(S)CFT model-building applications

- Large anomalous dimensions \Rightarrow Suppress or enhance otherwise finely-tuned quantities
- Conformal sequestering Luty, Sundrum (2001)
- Conformal technicolor Luty, Okui (2004)
- μ / B_{μ} problem of gauge mediation Roy, Schmaltz (2007)
- Flavor hierarchy Poland, Simmons-Duffin (2009)
- RG flows near (S)CFTs
- Walking technicolor Holdom (1985)
- Unparticle physics Georgi (2007)

(S)OPE UV/IR applications

- Non-CFTs \Rightarrow Conformally covariant OPEs
- Softly broken symmetries as spontaneously broken symmetries
- Symmetry breaking seen as IR effect (via field or spurion vev)
- Symmetry restored in UV theory
\Rightarrow (S)OPE selection rules
\Rightarrow Strongly-coupled IR physics described by weakly-coupled UV physics through (S)OPE
- Example: QCD
- Not conformal (non-trivial RG flow)
- IR physics \Rightarrow Theory with chiral symmetry breaking $(\langle\bar{Q} Q\rangle \neq 0)$ and confinement $\left(\left\langle G_{\mu \nu}^{A} G^{A \mu \nu}\right\rangle \neq 0\right)$
- UV physics \Rightarrow Asymptotically free CFT
\Rightarrow QCD sum rules Shifman, Vainshtein, Zakharov (1979)

Probe hadron sector from lepton sector through gauge interactions (UV/IR physics separated using OPE)

$\Pi_{\text {hadron }, \mu \nu}(p)=i e^{2} \int d^{4} x e^{-i p \cdot x}\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle$

$$
\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)=\sum_{k} c_{i j}^{k}(x) \mathcal{O}_{k}(0)
$$

OPE, analyticity and optical theorem \Rightarrow Relations between total cross section and OPE coefficients

$$
\begin{aligned}
\Pi_{\text {hadron }}(s) & =\frac{1}{2 \pi i} \int_{s_{0}}^{\infty} d s^{\prime} \frac{\operatorname{Disc} \Pi_{\text {hadron }}\left(s^{\prime}\right)}{s^{\prime}-s} \\
\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}(s) & =\frac{2 \pi i \alpha}{s} \operatorname{Disc} \Pi_{\text {hadron }}(s)
\end{aligned}
$$

Operator product expansion: Review

Operator product expansion

$$
\begin{aligned}
\mathcal{O}_{i}(x) \mathcal{O}_{j}(0) & =\sum_{k} \frac{c_{i j}^{k}}{x^{\Delta_{i}+\Delta_{j}-\Delta_{k}}} \mathcal{O}_{k}(0) \\
& =\sum_{\text {primary } k} \frac{c_{i j}^{k}}{x^{\Delta_{i}+\Delta_{j}-\Delta_{k}}} F_{\Delta_{i} \Delta_{j}}^{\Delta_{k}}(x, P) \mathcal{O}_{k}(0)
\end{aligned}
$$

- Short distance physics expressed in terms of local operators
- Wilson coefficients \Rightarrow UV physics
- Vacuum expectation values \Rightarrow IR physics
- OPE constrained by conformal symmetry \Rightarrow Wilson coefficients of descendants determined by Wilson coefficients of primaries Ferrara, Gatto, Grillo (1971)

CFT correlation functions

2-point and 3-point correlation functions

$$
\begin{aligned}
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right)\right\rangle & =\frac{g_{i j}}{x_{12}^{\Delta_{i}+\Delta_{j}}} \\
\left\langle\mathcal{O}_{i}\left(x_{1}\right) \mathcal{O}_{j}\left(x_{2}\right) \mathcal{O}_{k}\left(x_{3}\right)\right\rangle & =\frac{c_{i j k}}{x_{12}^{\Delta_{i}+\Delta_{j}-\Delta_{k}} x_{31}^{\Delta_{k}+\Delta_{i}-\Delta_{j}} x_{23}^{\Delta_{j}+\Delta_{k}-\Delta_{i}}}
\end{aligned}
$$

- 2-point function coefficients $g_{i j}=c_{i j}^{0}$ (Zamolodchikov metric)
- 3-point function coefficients $c_{i j k}=c_{i j}^{\ell} g_{\ell k}$

Superconformal operator product expansion

Superconformal modules

Superconformal operator product expansion

$$
\begin{aligned}
& \mathcal{O}_{i}(x) \mathcal{O}_{j}(0) \stackrel{?}{=} \sum_{\text {superprimary } k} \frac{c_{i j}^{k}}{x^{\Delta_{i}+\Delta_{j}-\Delta_{k}}} F_{i j}^{k}(x, P, Q, \bar{Q}) \mathcal{O}_{k}(0) \\
& \mathcal{T}_{\mu}(z)=j_{\mu}^{R}(x)+\theta^{\alpha} \mathcal{S}_{\alpha \mu}(x)+\bar{\theta}^{\dot{\alpha}} \overline{\mathcal{S}}_{\dot{\alpha} \mu}(x)+2 \theta \sigma^{\nu} \bar{\theta} T_{\nu \mu}(x)+\cdots \\
& \mathcal{J}(z)=J(x)+i \theta j(x)-i \overline{\theta j}(x)-\theta \sigma^{\mu} \bar{\theta} j_{\mu}(x)+\cdots
\end{aligned}
$$

- OPE constrained by superconformal symmetry
- Sum over superprimaries instead of primaries
\Rightarrow Wilson coefficients of superdescendants NOT fully determined by Wilson coefficients of superprimaries (existence of superconformal 3-point invariants)! Osborn (1998)

Current-current SOPE

Superconformal 3-point correlation functions for supercurrents

$$
\left\langle\mathcal{J}\left(z_{1}\right) \mathcal{J}\left(z_{2}\right) \mathcal{O}^{\mu_{1} \ldots \mu_{\ell}}\left(z_{3}\right)\right\rangle=\frac{1}{x_{\overline{1} 3}{ }^{2} x_{\overline{3} 1}{ }^{2} x_{\overline{2} 3}{ }^{2} x_{\overline{3} 2}{ }^{2}} t^{\mu_{\mathcal{J}} \ldots \mathcal{J O}_{\ell}}{ }^{\mu_{\ell}}\left(X_{3}, \Theta_{3}, \bar{\Theta}_{3}\right)
$$

- $\mathcal{O}^{\mu_{1} \ldots \mu_{\ell}}$ real spin- ℓ superfield with vanishing R-charge
- $t_{\mathcal{J J O}}(X, \Theta, \bar{\Theta})$ fully determined by superconformal symmetry and supercurrent conservation JFF, Intriligator, Stergiou (2011)

Superconformal 3-point correlation functions for supercurrents

$$
\begin{aligned}
& t_{\mathcal{J} \mathcal{J} \mathcal{O}_{\ell=\text { even }}}^{\mu_{1} \ldots \mu_{\ell}}(X, \Theta, \bar{\Theta})= c_{\mathcal{J J O}}^{\ell} \\
& \frac{X_{+}^{\left(\mu_{1}\right.} \cdots X_{+}^{\left.\mu_{\ell}\right)}}{(X \cdot \bar{X})^{2-\frac{1}{2}(\Delta-\ell)}} \\
& \times\left[1-\frac{1}{4}(\Delta-\ell-4)(\Delta+\ell-6) \frac{\Theta^{2} \bar{\Theta}^{2}}{X \cdot \bar{X}}\right] \\
& t_{\mathcal{J} J \mathcal{J O}_{\ell=\text { odd }}}^{\mu_{1} \ldots \mu_{\ell}}(X, \Theta, \bar{\Theta})= c_{\mathcal{J} \mathcal{J} \mathcal{O}_{\ell}} \frac{X_{+}^{\left(\mu_{1}\right.} \cdots X_{+}^{\mu_{\ell-1}}}{(X \cdot \bar{X})^{2-\frac{1}{2}(\Delta-\ell)}} \\
& \times\left[X_{-}^{\left.\mu_{\ell}\right)}-\frac{\ell(\Delta-\ell-4)}{\Delta-2} \frac{\left(X_{-} \cdot X_{+}\right) X_{+}^{\left.\mu_{\ell}\right)}}{X \cdot \bar{X}}\right]
\end{aligned}
$$

\Rightarrow Relations in current-current SOPE from superconformal symmetry and supercurrent conservation

From superprimaries to superdescendants (applications to GGM)

$$
\begin{aligned}
& j_{\alpha}(x) \bar{j}_{\dot{\alpha}}(0)= \frac{1}{x^{4}}\left[(S \text { ix } \cdot \sigma)_{\dot{\alpha}}(i x \cdot \sigma \bar{S})_{\alpha}-x^{2} \bar{Q}_{\dot{\alpha}}(i x \cdot \sigma \bar{S})_{\alpha}\right. \\
&\left.+2 \Delta J x^{2}(i x \cdot \sigma)_{\alpha \dot{\alpha}}\right](J(x) J(0)) \\
& j_{\mu}(x) j_{\nu}(0)= \frac{1}{16 x^{8}}\left[\left(x^{2} \eta_{\mu \rho}-2 x_{\mu} x_{\rho}\right)\left(S \sigma^{\rho} \bar{S}-\bar{S} \sigma^{\rho} S\right)\right. \\
&\left.\times x^{4}\left(\bar{Q} \bar{\sigma}_{\nu} Q-Q \sigma_{\nu} \bar{Q}\right)+\cdots\right](J(x) J(0)) \\
& j_{\alpha}(x) j_{\beta}(0)= \frac{1}{x^{2}} Q_{\beta}(i x \cdot \sigma \bar{S})_{\alpha}(J(x) J(0)) \\
& j_{\mu}(x) J(0)=\frac{x^{2} \eta_{\mu \nu}-2 x_{\mu} x_{\nu}}{4 x^{4}}\left[S \sigma^{\nu} \bar{S}-\bar{S} \bar{\sigma}^{\nu} S\right](J(x) J(0)) \\
& S^{\alpha} S^{\beta}(J(x) J(0))=0
\end{aligned}
$$

Superconformal blocks

Decomposition into primaries Poland, Simmons-Duffin (2010)

$$
\begin{aligned}
\mathcal{O}^{\mu_{1} \ldots \mu_{\ell}}(x, \theta, \bar{\theta})=A^{\mu_{1} \ldots \mu_{\ell}}(x)+\theta \sigma_{\mu} \bar{\theta} & B^{\mu \mu_{1} \ldots \mu_{\ell}}(x) \\
& +\left(\theta \sigma_{\mu} \bar{\theta}\right)^{2} D^{\mu_{1} \ldots \mu_{\ell}}(x)+\cdots
\end{aligned}
$$

- A and D irreducible spin- ℓ representations
- $B \sim M+N+L$ where M spin- $(\ell+1)$ representation and N spin- $(\ell-1)$ representation
$\Rightarrow A_{\text {primary }}, M_{\text {primary }}, N_{\text {primary }}, L_{\text {primary }}$ and $D_{\text {primary }}$

Superconformal 3-point function and SOPE coefficients

$$
\begin{aligned}
c_{J J M_{\text {primary }}^{\ell+1 ; \ell=\text { even }}} & =c_{J J N_{\text {primary }}^{\ell-1 ; \ell=\text { even }}}=c_{J J L_{\text {primary }}}=0 \\
c_{J J D_{\text {primary }}^{\ell: \ell=\text { even }}} & =-\frac{\Delta(\Delta+\ell)(\Delta-\ell-2)}{8(\Delta-1)} c_{J J A_{\text {primary }}^{\ell \ell \ell=\text { even }}} \\
c_{J J A_{\text {primary }}^{\ell ; \ell=\text { odd }}} & =c_{J J L_{\text {primary }}=c_{J J D_{\text {primary }}^{\ell ; \ell=\text { odd }}}=0} \\
c_{J J N_{\text {primary }}^{\ell-1 ; \ell=\text { odd }}} & =-\frac{(\ell+2)(\Delta-\ell-2)}{\ell(\Delta+\ell)} c_{J J M_{\text {primary }}^{\ell+1, \ell=\text { odd }}}
\end{aligned}
$$

- Consistent with Lorentz symmetry
- Consistent with unitary bound $\Rightarrow D_{\text {primary }}$ and $N_{\text {primary }}$ are null states for $\Delta=\ell+2$ (short representation)

4-point superconformal blocks

$$
\begin{gathered}
\left\langle J\left(x_{1}\right) J\left(x_{2}\right) J\left(x_{3}\right) J\left(x_{4}\right)\right\rangle=\frac{1}{x_{12}^{4} x_{34}^{4}} \sum_{\mathcal{O}_{\Delta, \ell} \in J \times J} \frac{\left(c_{J J A_{\ell}}\right)^{2}}{c_{A_{\ell} A_{\ell}}} \mathcal{G}_{\Delta, \ell}^{J j ; J J}(u, v) \\
\mathcal{G}_{\Delta, \ell=\text { even }}^{J J ; J J}=g_{\Delta, \ell}+\frac{(\Delta+\ell)(\Delta-\ell-2)}{16(\Delta+\ell+1)(\Delta-\ell-1)} g_{\Delta+2, \ell} \\
\mathcal{G}_{\Delta, \ell=\text { odd }}^{J j ; J}= \\
\frac{(\ell+1)^{2}(\Delta+\ell)}{4(\Delta+\ell+1)} g_{\Delta+1, \ell+1} \\
+\frac{(\ell+2)^{2}(\Delta-\ell-2)}{\Delta-\ell-1} g_{\Delta+1, \ell-1}
\end{gathered}
$$

- $g_{\Delta, \ell}(u, v)$ universal 4-point conformal blocks (accounting for descendants) with u, v usual conformal cross-ratios
- $\mathcal{G}_{\Delta, \ell}^{J J J J}(u, v)$ non-universal 4-point superconformal blocks (accounting for superdescendants)

General gauge mediation: Overview

- SUSY breaking hidden sector connected to visible sector through gauge interactions Buican, Meade, Seiberg, Shih (2008)
- Decoupled hidden sector in $g \rightarrow 0$ limit
- Universal visible sector SUSY breaking effects introduced via loops
\Rightarrow Current-current correlation functions (even without hidden sector Lagrangian)

$$
\begin{gathered}
\mathcal{J}(z)=J(x)+i \theta j(x)-i \overline{\theta j}(x)-\theta \sigma^{\mu} \bar{\theta} j_{\mu}(x)+\cdots \\
\langle J(x) J(0)\rangle,\left\langle j_{\alpha}(x) \bar{j}_{\dot{\alpha}}(0)\right\rangle,\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle,\left\langle j_{\alpha}(x) j_{\beta}(0)\right\rangle
\end{gathered}
$$

Operator product expansion

Strongly-coupled hidden sector and OPE

$$
\begin{gathered}
J(x) J(0)=\sum_{k} c_{J J}^{k}(x) \mathcal{O}_{k}(0) \\
i \int d^{4} x e^{-i p \cdot x} J(x) J(0)=\sum_{k} \tilde{c}_{J J}^{k}(p) \mathcal{O}_{k}(0)
\end{gathered}
$$

- Relations between Wilson coefficients in same OPE and different OPEs
- $\langle J(x) J(0)\rangle$ overdetermined \checkmark
- $\left\langle j_{\alpha}(x) \overline{j_{\dot{\alpha}}}(0)\right\rangle,\left\langle j_{\mu}(x) j_{\nu}(0)\right\rangle$ and $\left\langle j_{\alpha}(x) j_{\beta}(0)\right\rangle$ determined in terms of $\langle J(x) J(0)\rangle \checkmark$
\Rightarrow Knowledge of strongly-coupled quantities in terms of $J(x) J(0)$ OPE

Cross sections

OPE constraints, analyticity and optical theorem

$$
\begin{aligned}
\sigma_{\text {visible } \rightarrow D^{*} \rightarrow \text { hidden }}(s) & =-\frac{(4 \pi \alpha)^{2}}{s} \sum_{k} \operatorname{Im}\left[\tilde{c}_{J J}^{k}(s)\right]\left\langle\mathcal{O}_{k}(0)\right\rangle \\
\sigma_{\text {visible } \rightarrow \lambda_{\alpha}^{*} \rightarrow \operatorname{hidden}}(s) & =f_{1 / 2}\left(\operatorname{Im}\left[\tilde{c}_{J J}^{k}(s)\right]\right) \\
\sigma_{\text {visible } \rightarrow A_{\mu}^{*} \rightarrow \operatorname{hidden}}(s) & =f_{1}\left(\operatorname{Im}\left[\tilde{c}_{J J}^{k}(s)\right]\right)
\end{aligned}
$$

- Good approximation with first few terms
- Consistent with direct computation in ordinary gauge mediation

Visible sector SUSY breaking masses

OPE constraints and analyticity

$$
\begin{aligned}
M_{\text {gaugino }} \approx & \sum_{k} \frac{\alpha \operatorname{Im}\left[s^{d_{k} / 2} \tilde{c}_{J J}^{k}(s)\right]}{2^{d_{k}-1} d_{k} M^{d_{k}}}\left\langle Q^{2}\left(\mathcal{O}_{k}(0)\right)\right\rangle \\
m_{\text {sfermion }}^{2} \approx & 4 \pi \alpha Y\langle J(x)\rangle \\
& \quad-\sum_{k} \frac{\alpha^{2} c_{2} \operatorname{Im}\left[s^{d_{k} / 2} \tilde{c}_{J J}^{k}(s)\right]}{2^{d_{k}+1} \pi d_{k}^{2} M^{d_{k}}}\left\langle\bar{Q}^{2} Q^{2}\left(\mathcal{O}_{k}(0)\right)\right\rangle
\end{aligned}
$$

- Reproduce the usual $f(x)$ and $g(x)$ functions of ordinary gauge mediation Martin (1996)

OPE constraints and analyticity

$$
\begin{aligned}
J^{A}(x) J^{B}(0)= & \tau \frac{\delta^{A B} \mathbb{1}}{16 \pi^{4} x^{4}}+\frac{k d^{A B C}}{\tau} \frac{J^{C}(0)}{16 \pi^{2} x^{2}} \\
& +w \frac{\delta^{A B} K(0)}{4 \pi^{2} x^{2-\gamma_{K}}}+c_{i}^{A B} \frac{\mathcal{O}_{i}(0)}{x^{4-\Delta_{i}}}+\cdots \\
M_{\text {gaugino }} \approx & -\frac{\alpha \pi w \gamma_{K i}}{8 M^{2}}\left\langle Q^{2}\left(\mathcal{O}_{i}(0)\right)\right\rangle \\
m_{\text {sfermion }}^{2} \approx & 4 \pi \alpha Y\langle J(x)\rangle+\frac{\alpha^{2} c_{2} w \gamma_{K i}}{64 M^{2}}\left\langle\bar{Q}^{2} Q^{2}\left(\mathcal{O}_{i}(0)\right)\right\rangle
\end{aligned}
$$

- Good approximation with first few terms
- $f(x), g(x) \sim 1 / 2+\cdots$ instead of $f(x), g(x) \sim 1+\mathcal{O}(x)$ in ordinary gauge mediation

Features and applications

Features

- Undetermined superconformal 3-point correlation functions
- Fully determined superconformal current-current SOPE
- Relations between current-current OPEs
- Well-defined current 4-point superconformal blocks

Applications to GGM

- All current-current OPEs determined by $J(x) J(0)$ OPE
- Relations between Wilson coefficients
- Cross sections and SUSY breaking masses from $J(x) J(0)$
- Incalculable strongly-coupled models made tractable

