SEARCHES FOR LIGHT NEW PHYSICS WITH BABAR

Bertrand Echenard

on behalf of the BABAR Collaboration

California Institute of Technology

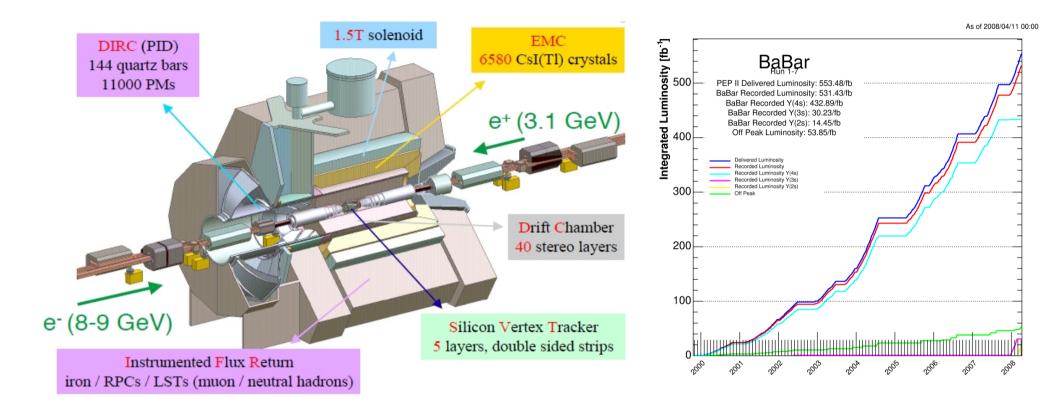
SUSY 2011, Fermilab

Supersymmetry 2011 (SUSY11)

from 28 August 2011 to 02 September 2011 (US/Central) *Fermilab*

Light exotic particles could be discovered at BABAR or New Physics probed at TeV scale!

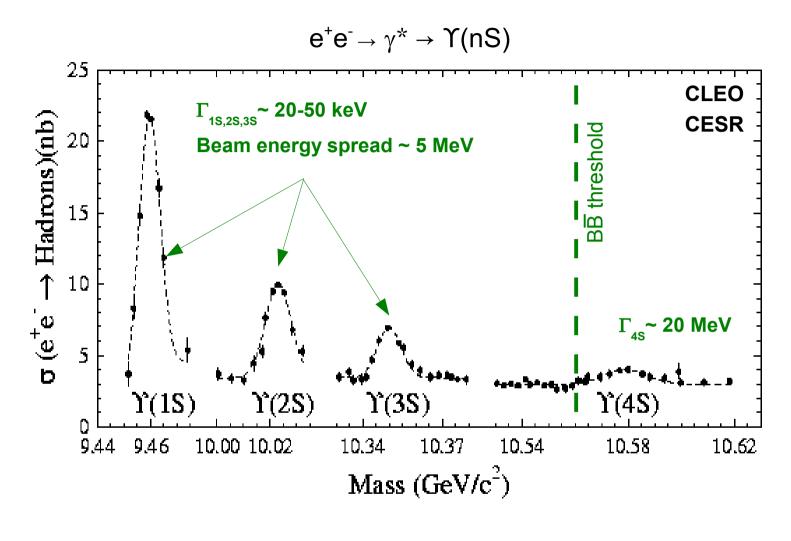
Discovery potential for light Higgs boson, dark matter, dark forces, LFV,...


A hunt for

Light Higgs boson in $\Upsilon(3S,2S)$ decays

Dark Matter in $\Upsilon(1S, 2S, 3S)$ decays

Dark forces in e⁺e⁻ interactions


BABAR collected around 513 fb⁻¹ of e^+e^- collisions around the Υ (4S)

BABAR data sample contains

~470 x 10⁶ Υ(4S)
~120 x 10⁶ Υ(3S) (10x Belle, 25x CLEO)
~100 x 10⁶ Υ(2S) (10x CLEO)
~ 18 x 10⁶ Υ(1S) from Υ(2S)→
$$\pi^+\pi^-$$
 Υ(1S)

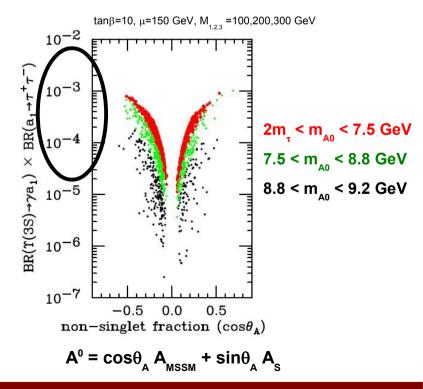
Upsilon resonances

$$\mathsf{BF}(\ \Upsilon(\mathsf{nS}) \to \mathsf{X}\) \ / \ \mathsf{BF}(\Upsilon(\mathsf{4S}) \to \mathsf{X}) \ = \ \Gamma_{\mathsf{4S},\mathsf{total}} \ / \ \Gamma_{\mathsf{nS},\mathsf{total}} \ (\mathsf{n=1,2,3})$$

Significantly better sensitivity to direct production of light degrees of freedom at narrow resonances

LIGHT HIGGS BOSON

Light Higgs Boson

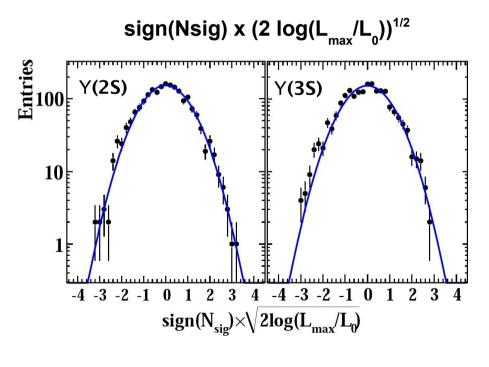

- A NMSSM proposed to solve the "µ problem", adding one CP-odd Higgs, one CP-even Higgs and one neutralino to MSSM content
- ⇒ A light CP-odd Higgs A⁰ with mass lower than $2m_b$ is **not excluded** by LEP constraints and could explain the excess observed in $e^+e^- \rightarrow Zbb$ events at $M_{bb} \sim 100$ GeV
- \Rightarrow Radiative $\Upsilon(nS)$ decays (n=1,2,3) offer an ideal environment to search for light Higgs

Radiative $\Upsilon(nS) \rightarrow \gamma A^0$ decays

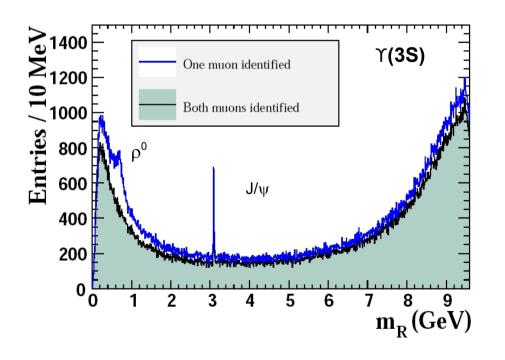
- Fully reconstructed in $A^0 \rightarrow \mu^+ \mu^-$
- Partially reconstructed in $A^0 \rightarrow \tau^+ \tau^-, q \overline{q}$
- Invisible decay $A^0 \rightarrow \chi_1 \chi_1$ if $m_{A0} > 2m_{\chi}$

Can have a very large branching fraction

Shrok, Suzuki, PLB 110, 250 (1982) Hiller, PRD 70, 034018 (2004) Dermisek, Guinon, McElrath., PRD 76, 051105 (2007) Dermisek and Guinon, PRD 81, 075003 (2010)

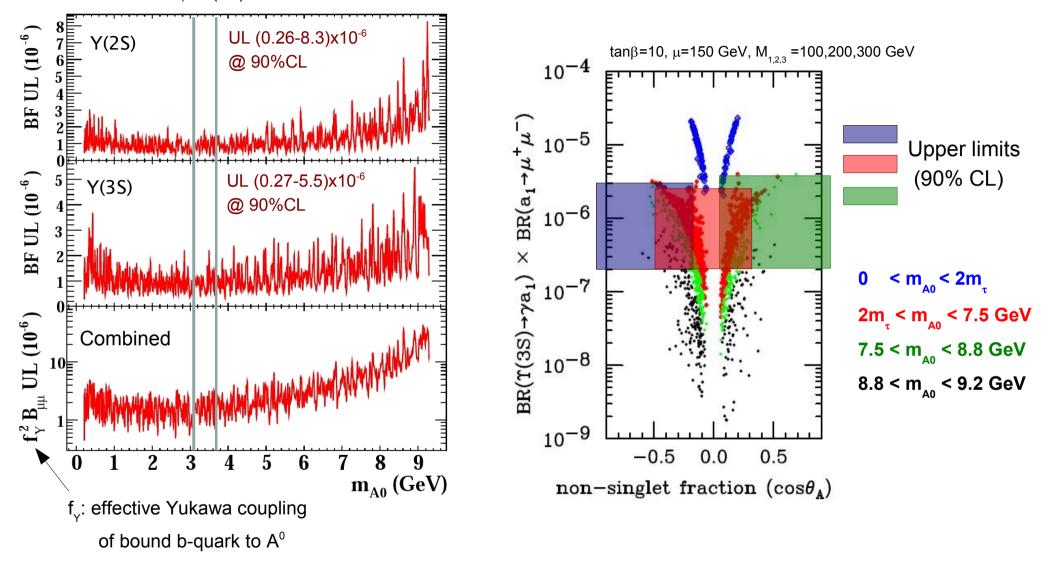


Event selection


- \Rightarrow Two tracks and a photon with E^{*} > 0.2 GeV
- ⇒ One or two tracks identified as muon(s)
- \Rightarrow Energy and beam constraints for $\Upsilon(2,3S)$ candidate
- ⇒ Muon pair and photon back-to-back in the CM frame

Signal extraction

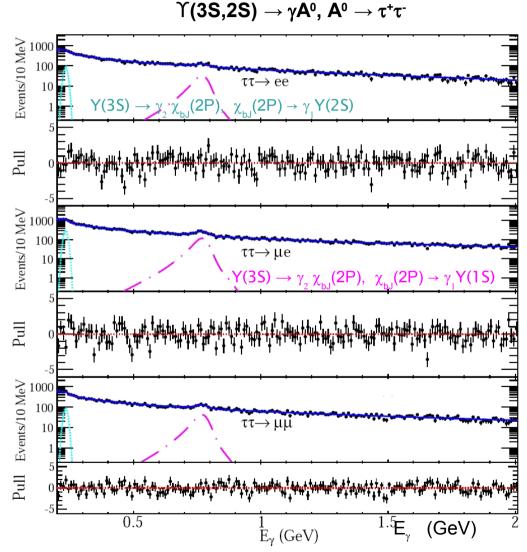
- \Rightarrow Fit the reduced mass m_r = $(m_{A0}^2 4^2 m_{\mu})^{1/2}$
- Scan A⁰ mass between 0.212 9.3 GeV in steps of 2-5 MeV


Agree with null hypothesis

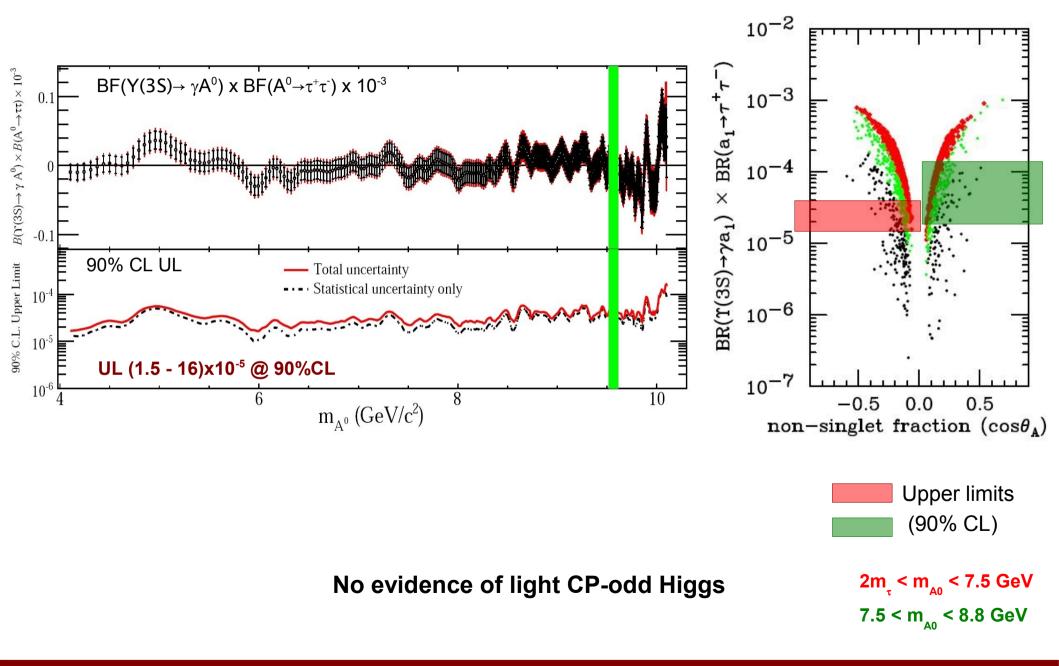
 Υ (3S,2S) $\rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$ - Results

J/ψ Y(2S)

PRL103, 081803 (2009)


Significant constraints on other theories (axion-like particles, dark photons,...)

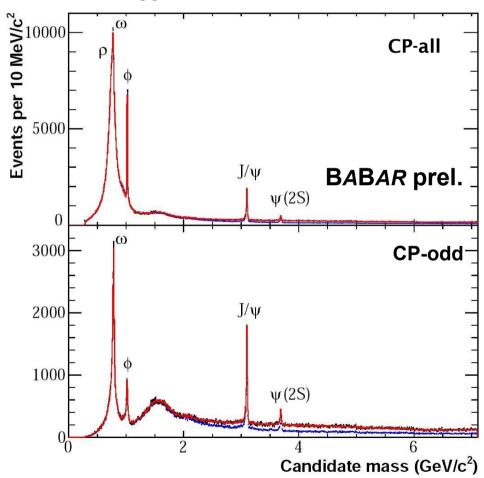
Event selection


- \rightleftharpoons Leptonic decays for both $\tau\!\!:$ ee, eµ and µµ modes
- \Rightarrow Two tracks and a photon with E₂ > 0.1 GeV
- Cuts on additional discriminating variables to improve purity

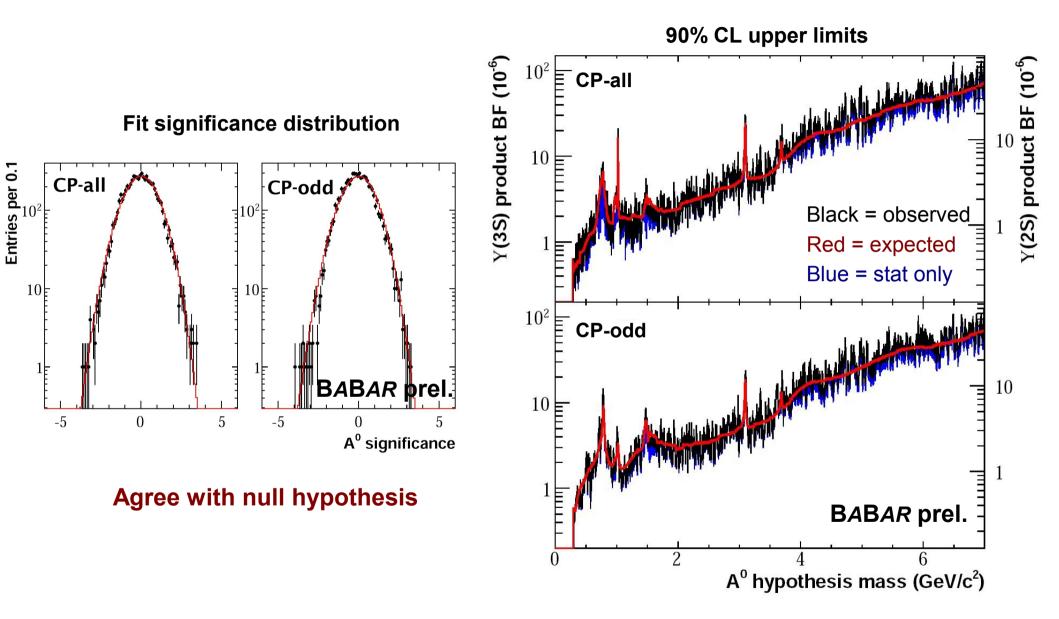
Signal extraction

- ⇒ Fit the photon energy spectrum for peak, include continuum and peaking backgrounds
- Scan A⁰ mass between 4.03 10.10 GeV in steps of 4-23 MeV

 Υ (3S,2S) $\rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$ - Results


BABAR preliminary

Event selection


- \Rightarrow At least two tracks and one photon with E^{*} > 0.2 GeV
- ⇒ Reconstructed the full candidate
- ⇒ Energy and beam constraints to improve resolution
- \Rightarrow Consider both CP-all and CP-odd (no $\pi\pi/KK$) hypotheses

Signal extraction

- ⇒ Fit the hadronic mass distribution
- ⇒ Include $e^+e^- \rightarrow q\overline{q}$ (q=u,d,s,c) continuum, Y(nS) decays and additional resonances (f_0, f_2, f_4)
- Scan A⁰ mass between 0.29 7.1 GeV in steps of 1 MeV

Higgs candidate mass distribution

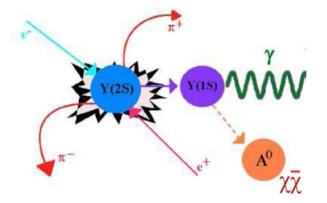
No evidence of light Higgs

PRL107, 021804 (2011)

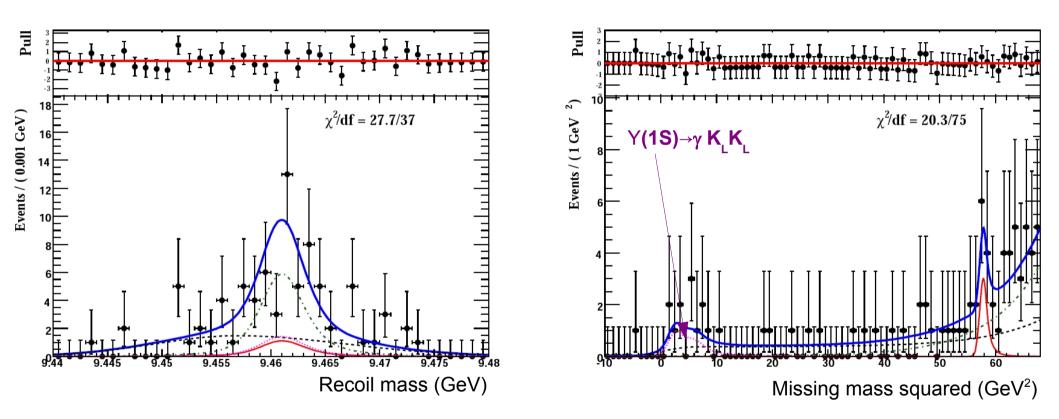
Event selection

- \Rightarrow Tag the dipion transition $\Upsilon(2S) \rightarrow \pi^+\pi^- \Upsilon(1S)$ using MVA classifier
- \Rightarrow Two tracks of opposite charge and a photon with E_v > 0.15 GeV
- ⇒ No additional activity
- ⇒ Missing energy and momentum

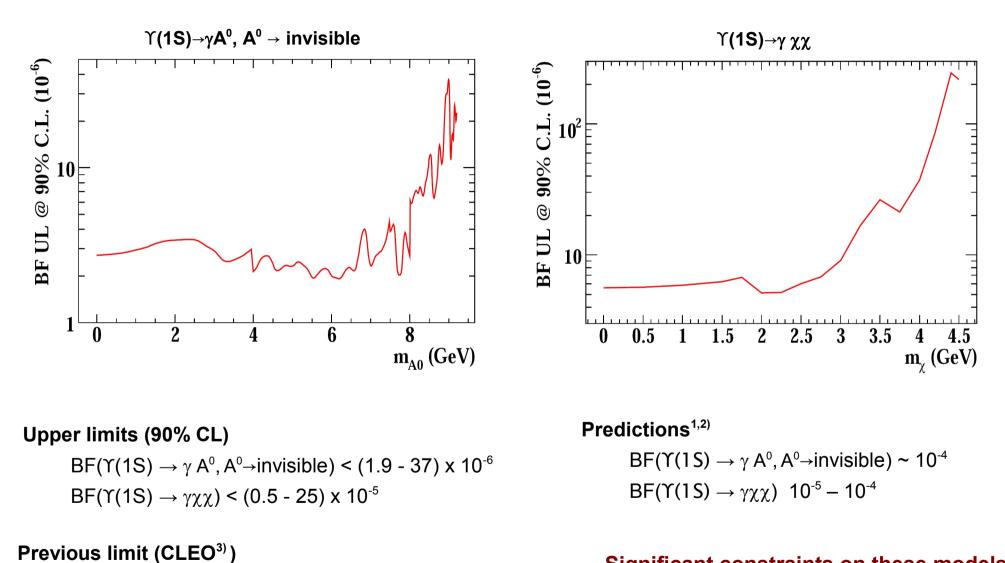
Major backgrounds


- $\Rightarrow \text{ Continuum: } e^+e^- \rightarrow \gamma \ \pi^+\pi^- \text{ , } \Upsilon(1\text{ S}) \rightarrow \gamma \ I^+I^-$
- $\Rightarrow \text{Peaking: } \Upsilon(2S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S), \ \Upsilon(1S) \rightarrow \gamma \text{ nn}, \ \gamma \text{ K}_{_{1}}\text{ K}_{_{1}}$

Signal extraction


- \Rightarrow Consider both $\Upsilon(1S) \rightarrow \gamma A^0$ (two-body) and $\Upsilon(1S) \rightarrow \gamma \chi \chi$ (multi-body) decays
- \Rightarrow 2D fit the the recoil mass squared (M²_{recoil}) and missing mass (M²_x) squared

$$M_{\text{recoil}}^2 = M_{\Upsilon(2S)}^2 + m_{\pi\pi}^2 - 2M_{\Upsilon(2S)}E_{\pi\pi}^*$$
$$M_X^2 = (\mathcal{P}_{e^+e^-} - \mathcal{P}_{\pi\pi} - \mathcal{P}_{\gamma})^2$$


 \Rightarrow Scan A⁰ mass 0 – 9.2 GeV and χ mass 0 – 4.5 GeV

Most significant peak at $m_{A} = 7.58$ GeV with significance 2.0 σ .

Probability >30% to observe a peak of this significance anywhere

Significant constraints on these models

1) PRD 76 ,051105 (2007) 2) PRD 80,115019 (2009), arXiv:0712.0016 3) CLEO, PRD 51, 2053 (1995)

BF($\Upsilon(1S) \rightarrow \gamma \gamma \gamma) \sim 10^{-3}$

DARK MATTER AND DARK FORCES

Generic Dark Matter model

- ⇒ Minimal model introducing a dark matter particle χ and a new scalar or gauge boson A' to serve as a s-channel annihilation mediator (m_A > 2m_y)
- Scalar/boson A' couples to SM via Higgs mixing (scalar) or kinetic mixing with SM hypercharge (vector)
- Could increase the invisible decay width of the Y(1S) predicted by SM¹⁾ by orders of magnitude. Rate estimates are fairly model independent, based on cosmological observations and assuming time-reversal symmetry

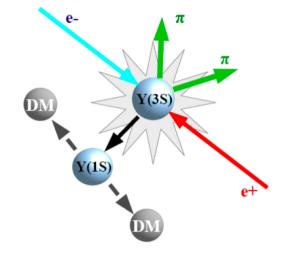
Rate predictions

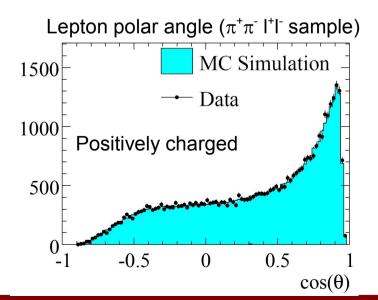
BF($\Upsilon(1S) \rightarrow \chi \chi$) ~ 4.2 x 10⁻⁴ (s-wave) (*PRD 72, 103508 (2005)*) BF($\Upsilon(1S) \rightarrow \chi \chi$) ~ 1.8 x 10⁻³ (p-wave) (*PRD 72, 103508 (2005)*) BF($\Upsilon(1S) \rightarrow \nu \nu$) ~ 9.9 x 10⁻⁶ (*PLB 441, 419 (1998)*)

Large increase from SM predictions

PRL 103, 251801 (2009)

Analysis strategy


- \Rightarrow Tag $\Upsilon(1S)$ mesons in $\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$ transition
- Select event containing two oppositely-charged tracks only (no extra activity)


Data sample contains

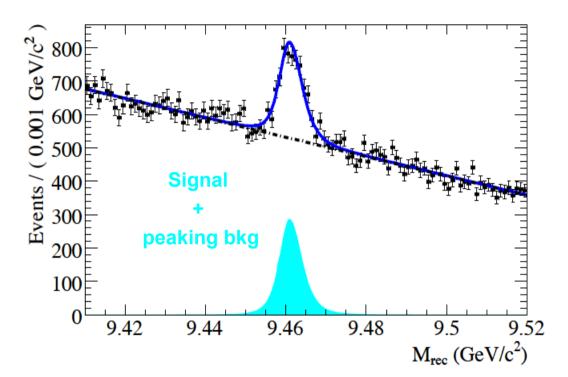
- \Rightarrow Non-peaking background from random $\pi^{+}\pi^{-}$ combinations
- ⇒ Peaking background (indistinguishable from signal) $\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S), \Upsilon(1S) \rightarrow X (X undetected)$
- \Rightarrow Signal: $\Upsilon(3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S), \ \Upsilon(1S) \rightarrow \text{invisible}$

Signal extraction

- \Rightarrow Fit recoil mass $M_{rec} = (s + M_{\pi\pi}^2 2sE_{\pi\pi}^*)^{1/2}$, should peak at $\Upsilon(1S)$
- ⇒ Subtract peaking background estimated from MC. Use $\Upsilon(1S,2S) \rightarrow I^{\dagger}I^{-}$ with one or two reconstructed leptons to check and correct simulations

PRL 103, 251801 (2009)

Fit


- ⇒ Extended unbinned maximum likelihood fit of recoil mass M_{rec}
- Sum of signal + peaking background (Nsum)
 Crystal-Ball (Gaussian with power-law tail)
- → Non-peaking background
 - 1st order polynomial

Results

Signal only	-118 ± 105 ± 124
Peaking bkg (MC)	2444 ± 123
Fit yield (Nsum)	2326 ± 105

Upper limit (90% CL)

 $BF(\Upsilon(1S) \rightarrow invisible) < 3.0 \times 10^{-4}$

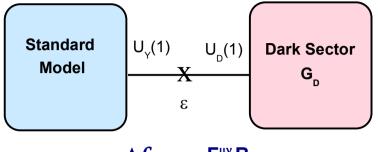
Previous measurements BF(Y(1S) → invisible) CLEO: BF < 3.9×10^{-3} @ 90% CL PRD 75 (2007) 031104 Belle: BF < 2.5×10^{-3} @ 90% CL PRL 98 (2007) 132001

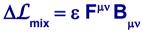
No evidence of dark matter contribution to invisible Υ (1S) decays

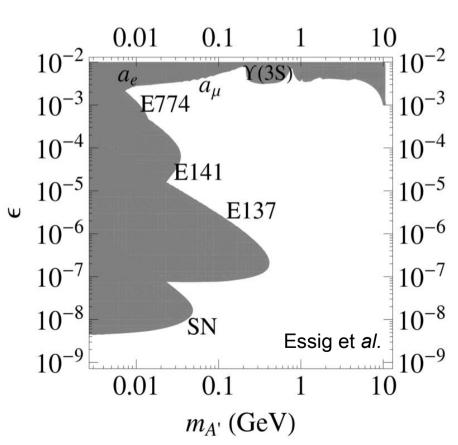
Dark forces

Dark forces

- A Models of dark matter introduce a new dark sector with a U(1)_D gauge group (and corresponding charge). The corresponding gauge boson has a mass O(GeV) and is usually called a dark photon.
- ⇒ Interaction with the SM is via kinetic mixing


$\epsilon F^{\mu\nu} B_{\mu\nu}$


For a low mass dark photon, the mixing is essentially with the photon with a mixing strength ε .


→ Non-Abelian group allows non-elastic scattering that could explain the modulation observed by DAMA and the absence of signal reported by Xenon and CDMS.

⇒ Parameter space is largely unexplored

See for example: N. Arkani-Hamed et al., PRD 79, 015014 (2009) M. Pospelov et al., PLB 662 (2008) 53, PLB 671, 391 (2009). B. Batellet al., PRD 79, 115008 (2009) R. Essig et al., PRD 80, 015003 (2009)

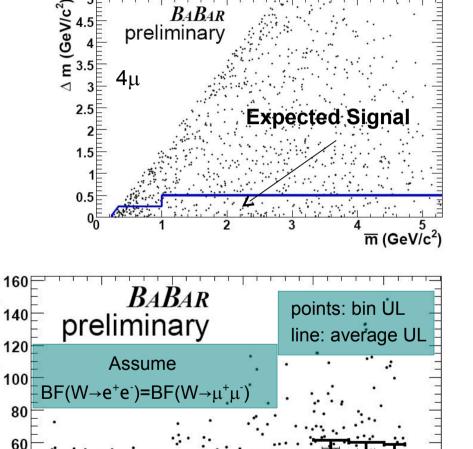
Dark forces - Search for dark bosons

Search for $e^+e^- \rightarrow A'^* \rightarrow W_D W_D \rightarrow (|^+|^-) (|^+|^-) I=e,\mu$

- ⇒ Resonances have similar masses
- ⇒ Signal extracted using a cut-and-count analysis, background estimated from sidebands

No evidence of dark boson found yet!

Upper limits (90% CL)


$$\sigma(e^+e^- \rightarrow W_D^- W_D^- \rightarrow (l^+l^-) (l^+l^-)) < 25-60 \text{ ab}$$

 $g_D^- \epsilon^2 < 10^{-9} - 10^{-7}$

 $\sigma(e^+e^- \rightarrow W'W' \rightarrow l^+l'l'^+l') 90\% \text{ UL(ab)}$

40

20

00

3

4

5 M(W') (GeV/c²) No significant evidence for light new Physics has been found and upper limits have been set with a sizable improvement over previous measurements

Excluded a large fraction of parameters space for some New Physics models.

A Super-B factory can significantly improve these searches, exploring regions difficult to access at the LHC, and help elucidate the structure of New Physics.

Still many on-going analyses, the quest continues...

