SUSY 2011

Quirks from Tevatron to LHC

Graham Kribs

Fermilab/U Oregon

in collaboration with **Fok** (U Oregon -> York U) **Harnik, Martin** (Fermilab)

Outline

- Quirks, infracolor, and quirkonia
- Wjj arising from (s)quirk production
 - Idea -> Strategy
 - Model -> Calculations
 - Associated processes (esp. WWjj)
- Summary

Outline

- Quirks, infracolor, and quirkonia
- Wjj arising from (s)quirk production
 - Idea -> Strategy
 - Model -> Calculations
 - Associated processes (esp. WWjj)
- Summary

Quirks

"Quirks" -- New particles transforming under a new strong force "infracolor"

$\Lambda_{IC} << M_Q$

as well as (part of) SM group.

Kang & Luty 0805.4642

$\Lambda_{IC} \ll M_Q$

Infracolor strings don't break -no fragmentation.

$\Lambda_{QCD} > M_{u,d}$

QCD strings break -- fragmentation.

Stretched Infracolor String

Infracolor strings can stretch until energy in infracolor flux tube is $\approx \sigma L \approx \Lambda_{\rm IC}^2 L$

Wonga Wonga

Collider signal qualitatively distinct for macroscopic versus microscopic

Our interest is microscopic: $10 \text{ keV} \ll \Lambda_{IC} \ll M_Q$

Energy loss, spin-down, annihilation

annihilation

Energy Loss Assumption

Infraglueball Emission

For $\Lambda_{IC} << M_Q$, infraglueballs (g'g') escape detector as missing energy

Quirky Calculability

Quirks

estimatable

(Quirkonium Decays)

Depending on whether quirks are chiral versus non-chiral, the relative quirkonia decay rates are qualitatively distinct and interesting!

See talk by Ricky Fok later this session.

Outline

- Quirks, infracolor, and quirkonia
- Wjj arising from (s)quirk production
 - Idea -> Strategy
 - Model -> Calculations
 - Associated processes (esp. WWjj)
- Summary

CDF Wjj excess

CDF: <u>http://www-cdf.fnal.gov/physics/ewk/2011/wjj/7_3.html</u>

Quirky Idea:

Quirky Idea:

Quirky Idea:

Strategy

Outline

- Quirks, infracolor, and quirkonia
- Wjj arising from (s)quirk production
 - Idea -> Strategy
 - Model -> Calculations
 - Associated processes (esp. WWjj)
- Summary

Model

Scalar quirks "squirks" transforming under [SU(N)IC,SU(3)c,SU(2)L,U(1)Y]:

Model

Scalar quirks "squirks" transforming under $[SU(N)_{IC}, SU(3)_{c}, SU(2)_{L}, U(1)_{Y}]:$

Squirk Interactions of U $\begin{bmatrix} u_+ \\ u_3 \\ u_- \end{bmatrix}$, S

Renormalizable interactions include:

 $\frac{1}{2}M_U^2 U^{\dagger}U + \frac{1}{2}M_S^2 S^{\dagger}S$ $+ \lambda_{U4}(U^{\dagger}U)^2 + \lambda_{S4}(S^{\dagger}S)^2$ $+ \lambda_U(H^{\dagger}H)(U^{\dagger}U) + \lambda_S(H^{\dagger}H)(S^{\dagger}S)$ $\lambda_4(S^{\dagger}S)(U^{\dagger}U)$ $\kappa(H^{\dagger}\tau^a H)(S^{\dagger}U_a) + \text{h.c.}$ masses quartics Higgs portal "double wonga wonga" isospin splitting

Squirk Interactions of U $\begin{bmatrix} u_+ \\ u_3 \\ u_- \end{bmatrix}$, S

Renormalizable interactions include:

$\frac{1}{2}M_U^2 U^\dagger U + \frac{1}{2}M_S^2 S^\dagger S$	masses
$+ \lambda_{U4} (U^{\dagger}U)^2 + \lambda_{S4} (S^{\dagger}S)^2$	quartics
$+ \lambda_U (H^{\dagger}H)(U^{\dagger}U) + \lambda_S (H^{\dagger}H)(S^{\dagger}S)$	Higgs portal
$\lambda_4(S^{\dagger}S)(U^{\dagger}U)$	"double wonga wonga"
$\kappa (H^{\dagger} \tau^a H) (S^{\dagger} U_a) + \text{h.c.}$	isospin splitting

Isospin Splitting

 $\kappa (H^{\dagger} \tau^a H) (S^{\dagger} U_a) + \text{h.c.}$

After EWSB, this leads to mass mixing among the q=0 squirks:

This is the main reason for squirks (instead of quirks)

Tevatron EW Production: $u_{\pm}u_{0}^{\dagger} + u_{\pm}u_{0}^{\dagger}$

Harnik, GK, Martin; 1106.2569

SU(N)_{IC} with $N \approx 3$ or 4, would appear to be sufficient!

BUT!! Dynamics more subtle; several other production processes; (some highly constrained, others can *add* to our signal)

Outline

- Quirks, infracolor, and quirkonia
- Wjj arising from (s)quirk production
 - Idea -> Strategy
 - Model -> Calculations
 - Associated processes (esp. WWjj)
- Summary

W^{\pm} u_0 Tevatron Colored Squirk Producti

Harnik, GK, Martin; 1106.2569

200

 σ per infracolor!

 u_{\pm}

uouo

LEP production zero (u₀: $T_3=0$; Y=0).

Typical hadron collider production and annihilation:

- gg: Resonance in dijets near $M_{jj} \approx 150-160$ GeV; super-safe from UA2 and Tevatron bounds
- g'g': Annihilation to infraglue weakly constrained by monojet search (radiate extra g)

One possibility of production and annihilation:

- · If β -decay proceeds rapidly, get several pb of WWjj
- If β -decay not so rapid, can have direct annihilation $u_{\pm}^{\dagger}u_{\pm} \rightarrow gg; g'g'; \gamma \gamma; u_{0}^{\dagger}u_{0}$

We calculated β-decay and estimated energy loss to arrive at "net" WWjj, Wjj, γ γ signals from the various paths.
Incorporating crude estimates of kinematics with cuts, we find
Wjj can just as easily arise from WWjj, esp when W decay off-shell.

Benchmarks

	Bench	Bench	Exp't
	1	2	Bound
Nic	3	4	-
Λ_{ic}	1.6	6.2	-
M_V	120	145	-
M_S	150	250	-
δ	106.5	172	-
λ_4	2	1	-
m_0	80	75	-
m_{\pm}	120	145	$\gtrsim 100$
m_1	175	279	-
$s_{ heta}$	0.82	0.89	-
$\sigma(u_0 u_0^{\dagger})$	33	42	-
$\sigma(u_{\pm}u_0^{\dagger} + u_0 u_{\mp}^{\dagger})$	2.5	1.9	-
$\sigma(u_{\pm}u_{\pm}^{\dagger})$	6.2	3.5	-
$BR(u_0u_0^{\dagger} \to gg)$	0.51	0.48	-
$BR(u_0 u_0^{\dagger} \to g'g')$	0.49	0.52	-
$\sigma_{\rm UA2}(u_0 u_0^{\dagger} \to gg)$	0.3	0.6	$\lesssim 90$
$\sigma_{\pm 0}(Wjj)$	0.72	0.84	-
$\sigma_{+-}(WWjj)$	2.4	2.4	-
$\sigma(\ell^+\ell^{-(')}jj) \times \text{eff}$	1.6	2.0	$\lesssim 2$
$\sigma(Wjj) \times \text{eff}$	1.3-2.0	1.0 - 1.5	$\lesssim 1.9$
$WWjj/Wjj_{\rm total}$	$\sim 85\%$	$\sim 69\%$	-
$\sigma_{+-}(\gamma\gamma)$	0.006	0.004	$\lesssim 0.01$ -0.04
$\sigma_{\pm 0}(W\gamma)$	1.1	0.2	$\lesssim 8-14$
ΔT	0.02	0.01	$-0.05 \rightarrow 0.2$
$\sigma_{ m LHC7}(u_0 u_0^{\dagger})$	480	430	-
$\sigma_{\rm LHC7}(u_{\pm}u_{\pm}^{\dagger})$	200	130	-

Harnik, GK, Martin; 1106.2569

Specific parameters satisfying our estimates of all constraints.

Summary

- New non-Abelian infracolor force + (s)quirks
- "Even" microscropic quirks have surprisingly interesting collider signals
- Wjj as squirk production
 - -- no associated Zjj or γ jj signal
 - -- WWjj feeding into top sample
 - -- $\gamma \gamma$ resonance (small?) from u_±u_± annih
 - -- underlying event? unusual kinematics?

Typical Production Cross Sections

electroweak

colored

Martin 1012.2072