

Decaying Dark Matter from Dark Instantons

Reinard Primulando

The College of William and Mary

Work with Chris Carone and Josh Erlich

Phys.Rev. D 82, 055028 (2010)

Outline of the Talk

- 6 Cosmic ray positron excess from PAMELA and FERMI-LAT data
- Decaying dark matter
- 5 Dark instantons and decaying dark matter
- 6 Conclusions

Cosmic Rays Anomalies

Cosmic Rays Anomalies

FERMI-LAT positron + electron flux

Decaying Dark Matter from Dark Instantons - p. 4/18

Possible explanations for the anomalies

- Astrophysical: Pulsar. Hooper, et.al. JCAP0901,025(2009); Yuksel, et.al. Phys.Rev.Lett.103,051101(2009).
- Dark matter annihilating/decaying into positrons. For a review: Fan, et.al. Int.J.Mod.Phys.D19,2011(2010)

Decaying Dark Matter

- Decaying dark matter can explain PAMELA positron excess. Ibarra, et.al. JCAP1001,009(2010) and references therein.
- 6 $\mathsf{DM} \to \ell^+ \ell^-, \ell^+ \ell^- \nu; \mathsf{DM} \not\to 2q, W\ell \text{ etc...}$
- $\mathcal{O}(\text{TeV})$ dark matter.
- ⁶ The lifetime of DM is $\mathcal{O}(10^{26})$ s.

Instanton

- ⁶ Consider a set of N_f massless fermions, ψ_s^{α} , transform in fundamental representation of SU(N).
- ⁶ The global symmetry of the model is $SU(N_f)_L \times SU(N_f)_R \times U(1)_V \times U(1)_A$.
- ⁶ 't Hooft pointed out that an instanton-induced operator violates the anomalous $U(1)_A$ global symmetry. 't Hooft, Phys.Rev.Lett.37,8(1976)
- 6 The effective operator is given by

$$\mathcal{L}^{eff} = Cg^{-8} e^{-\frac{8\pi^2}{g^2}} (2\delta_{\alpha_1\beta_1}\delta\alpha_2\beta_2 - \delta_{\alpha_1\beta_2}\delta_{\alpha_2\beta_1}) \epsilon^{st} \\ \times \bar{\psi}_1^{\alpha_1} (1+\gamma^5) \psi_s^{\beta_1} \bar{\psi}_2^{\alpha_2} (1+\gamma^5) \psi_t^{\beta_2} + \text{h.c} .$$

Decaving Dark Matter from Dark Instantons – p. 8/18

The Model

- 6 The gauge group is $G_{SM} \times SU(2)_D \times U(1)_D$.
- 6 New particles charge assignments:

ψ_L	$(2, -1/2)_0$	ψ_{uR},ψ_{dR}	$(1, -1/2)_0$
$\chi_L^{(1)}$	$(2, +1/6)_+$	$\chi^{(1)}_{uR},\chi^{(1)}_{dR}$	$(1, +1/6)_+$
$\chi_L^{(2)}$	$(2, +1/6)_0$	$\chi^{(2)}_{uR},\chi^{(2)}_{dR}$	$(1, +1/6)_0$
$\chi_L^{(3)}$	$(2, +1/6)_{-}$	$\chi^{(3)}_{uR},\chi^{(3)}_{dR}$	$(1, +1/6)_{-}$
E_L	$({f 1},0)$	E_R	$(1,0)_{-}$
H_D	$(2,0)_0$	η	$(1, 1/6)_0$

$U(1)_{\psi}$ Accidental Symmetry

6 With the charge assignments, there is an accidental global $U(1)_{\psi}$ symmetry.

	Combination	$U(1)_{\psi}$ $U(1)_{\psi}$	$()_D$
	$ar{\chi}\psi$	+1 -1	$\sqrt{3}$
	$ar{\chi}\psi^c$	-1 +2	2/3
ψ_L	$(2, -1/2)_0$	ψ_{uR},ψ_{dR}	$(1, -1/2)_0$
$\chi_L^{(1)}$	$(2, +1/6)_+$	$\chi^{(1)}_{uR},\chi^{(1)}_{dR}$	$(1, +1/6)_+$
$\chi_L^{(2)}$	$(2, +1/6)_0$	$\chi^{(2)}_{uR},\chi^{(2)}_{dR}$	$(1, +1/6)_0$
$\chi_L^{(3)}$	$(2, +1/6)_{-}$	$\chi^{(3)}_{uR},\chi^{(3)}_{dR}$	$(1, +1/6)_{-}$
E_L	$(1,0)_{-}$	E_R	$(1, 0)_{-}$
H_D	$(2,0)_0$	η	$(1, 1/6)_0$

$U(1)_{\psi}$ Accidental Symmetry

6 With the charge assignments, there is an accidental global $U(1)_{\psi}$ symmetry.

	Combination	$U(1)_{\psi}$ U	$\overline{\overline{(1)_D}}$
	$ar{ar{\chi}\psi}$	+1 -	-1/3
	$ar{\chi}\psi^{m{c}}$	-1 +	-2/3
ψ_L	$(2, -1/2)_0$	ψ_{uR},ψ_{dR}	$(1, -1/2)_0$
$\chi_L^{(1)}$	$(2, +1/6)_+$	$\chi^{(1)}_{uR},\chi^{(1)}_{dR}$	$(1, +1/6)_+$
$\chi_L^{(2)}$	$(2, +1/6)_0$	$\chi^{(2)}_{uR},\chi^{(2)}_{dR}$	$(1, +1/6)_0$
$\chi_L^{(3)}$	$(2, +1/6)_{-}$	$\chi^{(3)}_{uR},\chi^{(3)}_{dR}$	$(1, +1/6)_{-}$
E_L	$({f 1},0)$	E_R	$({f 1},0)$
H_D	$(2,0)_0$	η	$(1, 1/6)_0$

6 Decay of the lightest ψ is prevented in all order of perturbation theory.

Instanton Induced Operator

Triangle anomaly for $SU(2)_D^2 U(1)_{\psi}$.

$$\operatorname{tr}[t^a t^b N_{\psi}] = \frac{1}{2} \delta^{ab} \sum N_{\psi}$$

Decaying Dark Matter from Dark Instantons - p. 11/18

Instanton Induced Operator

Following 't Hooft 't Hooft, Phys.Rev.D14,3432(1976)

$$\mathcal{L}_{I} = \frac{C}{6 g_{D}^{8}} \exp\left(-\frac{8\pi^{2}}{g_{D}^{2}}\right) \left(\frac{m_{\psi}}{v_{D}}\right)^{35/6} \frac{1}{v_{D}^{2}} \left(2 \,\delta_{\alpha\beta} \delta_{\gamma\sigma} - \delta_{\alpha\sigma} \delta_{\beta\gamma}\right)$$
$$\cdot \left[(\overline{\chi_{L\beta}^{(2)c}} \psi_{L}^{\alpha}) (\overline{\chi_{L\sigma}^{(1)c}} \chi_{L}^{(3)\gamma}) - (\overline{\chi_{L\beta}^{(1)c}} \psi_{L}^{\alpha}) (\overline{\chi_{L\sigma}^{(2)c}} \chi_{L}^{(3)\gamma}) \right] + \text{h.c.}$$

Leptons- χ **Mixings**

Leptons- χ Mixings

Example: $\mathcal{L} \supset \eta \overline{\chi}_{dR}^{(1)} e_R^c$.

ψ_L	$(2, -1/2)_0$	ψ_{uR},ψ_{dR}	$(1, -1/2)_0$
$\chi_L^{(1)}$	$(2, +1/6)_+$	$\chi^{(1)}_{uR},\chi^{(1)}_{dR}$	$(1, +1/6)_+$
$\chi_L^{(2)}$	$(2,+1/6)_0$	$\chi^{(2)}_{uR},\chi^{(2)}_{dR}$	$(1, +1/6)_0$
$\chi_L^{(3)}$	$(2, +1/6)_{-}$	$\chi^{(3)}_{uR},\chi^{(3)}_{dR}$	$(1, +1/6)_{-}$
E_L	$(1,0)_{-}$	E_R	$({f 1},0)$
H_D	$(2,0)_0$	η	$(1, 1/6)_0$

Decaying Dark Matter from Dark Instantons - p. 13/18

Dark Matter Lifetime

5 The decay width of the dark matter is

$$\Gamma(\psi \to \ell^+ \ell^- \nu) \approx \frac{1}{g_D^{16}} \exp(-16\pi^2/g_D^2) \left(\frac{m_\psi}{v_D}\right)^{47/3} m_\psi$$
.

6 For
$$m_\psi = 3.5$$
 TeV and $v_D = 4$ TeV, we need $g_D pprox 1.15$.

Relic Density

Oark matter thermal equilibrium in the early universe is maintained by Higgs portal.

$$V = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 - \mu_D^2 H_D^{\dagger} H_D + \lambda_D (H_D^{\dagger} H_D)^2 + \lambda_{mix} (H^{\dagger} H) (H_D^{\dagger} H_D).$$

Direct Detection

- We found that DM-nucleon cross section is $\mathcal{O}(10^{-46})$ cm².
- 5 Three orders of magnitude lower than the current bound.

Direct Detection

- We found that DM-nucleon cross section is $\mathcal{O}(10^{-46})$ cm².
- 5 Three orders of magnitude lower than the current bound.

Conclusions

- ⁶ PAMELA positron excess can be explained by decaying dark matter.
- 6 The lifetime of the dark matter is $\mathcal{O}(10^{26})$ s.
- 6 Instanton-induced operator can explain the long lifetime of the dark matter.
- We constructed a model of decaying dark matter inspired by instanton-induced operator.
- Output to the correct dark matter relic density and satisfies direct detection bounds.

