Composite GUTs: model building and expectations at the LHC

M. Frigerio J. Serra A. Varagnolo

based on 1103.2997 [hep-ph], JHEP 1106:029,2011

Supersymmetry 2011, Fermilab
Composite GUTs: model building and facing the LHC

M. Frigerio J. Serra A. Varagnolo

based on 1103.2997 [hep-ph], JHEP 1106:029,2011

Supersymmetry 2011, Fermilab
Outline

1 Motivations and Intro
 - SUSY & the ALTERNATIVES
 - Some tools

2 Model Building
 - The idea, and real life
 - Our pNGBs, our Exotics and the EWPTs

3 Some phenomenology
 - Some doubts
 - Some hope
1 Motivations and Intro
- SUSY & the ALTERNATIVES
- Some tools

2 Model Building
- The idea, and real life
- Our pNGBs, our Exotics and the EWPTs

3 Some phenomenology
- Some doubts
- Some hope
Motivations for CompoGUTs

- **Unification** and its many appealing virtues
 - charge quantization
 - gauge quantum numbers of fermions
 - chiral anomalies cancellation
 - relative low energy values of SM gauge couplings
 - and more (DM stability, masses of νs,...)

- solution to the Hierarchy Problem (orthogonal to SUSY)
- predict properties of lightest states coming from the new Strong Sector: partners of Higgs and top
- accept the LHC challenge
Why we love SUSY:

- Solution to the Hierarchy Problem
- Improves Unification (with full perturbativity up to M_{GUT})
- Rich Pheno: new states predicted (Dark Matter?)

Of course, we do have some complaints/doubts:

- need for extra symmetry to avoid, e.g., p-decay (R-parity)
- parameter space for simplest models of SUSY shrinking
- nature has shown us other ways (QCD, SC)

All in all, not unwise to consider alternatives
The **big thing**: Solve the HP.

Many candidates: Technicolour, Higgsless, Extra Dimensions, ...Composite Higgs.
The **big thing**: Solve the HP.

Many candidates: Technicolour, Higgsless, Extra Dimensions, ... **Composite Higgs**.

Focus on CH scenario:

- **Solution** to HP \rightarrow move to the little HP (Fine Tuning!)
- ?? Unification ?? not perturbative!
- ?? New states ?? Huge model dependence $+$ some of them we **cannot control** (heavy resonances) \leftarrow the price of having a Low E effective description
The **big thing**: Solve the HP.

Many candidates: Technicolour, Higgsless, Extra Dimensions, ... Composite Higgs.

Focus on CH scenario:

- Solution to HP → move to the little HP (Fine Tuning!)
- ?? Unification ?? not perturbative!
- ?? New states ?? Huge model dependence + some of them we cannot control (heavy resonances) ← the price of having a Low E effective description

One step at a time. *Why* can’t we tell if our model unifies?
Do you know your beta functions?
Or: how to check if Unification occurs

SM: Unif fails

Higher Orders: NO help

MSSM: Good Unif (@ 1-loop)

Higher Orders: a bit worse

Motivations and Intro

Model Building

Some phenomenology

Summary

SUSY & the ALTERNATIVES

Some tools

Do you know your beta functions?

Or: how to check if Unification occurs

SM: Unif fails

Higher Orders: NO help

MSSM: Good Unif (@ 1-loop)

Higher Orders: a bit worse

Alvise Varagnolo

Compo GUTs
Do you know your beta functions?
Or: how to check if Unification occurs

SM: Unif fails

Higher Orders: NO help

MSSM: Good Unif (@ 1-loop)

Higher Orders: a bit worse

What about Composite Higgs (+ top)? Can we calculate?
Do you know your beta functions?
Or: how to check if Unification occurs

Compositeness vs Unif

Leading order UNKNOWN

What about Composite Higgs (+ top)? Can we calculate?

MSSM: Good Unif (@ 1-loop)

Higher Orders: a bit worse
Do you know your beta functions?
Or: how to check if Unification occurs

Compositeness vs Unif

Leading order **UNKNOWN**

Our ignorance is partial

\[
\frac{d}{d \ln \mu} \left(\frac{1}{\alpha_i} \right) = \frac{b_{i}^{\text{elem}}}{2\pi} + \frac{b_{i}^{\text{comp}}}{2\pi},
\]

elementary contribution is **KNOWN**
Do you know your beta functions? Or: how to check if Unification occurs

Compositeness vs Unif

Leading order UNKNOWN

Our ignorance is partial

\[
\frac{d}{d \ln \mu} \left(\frac{1}{\alpha_i} \right) = \frac{b_{i}^{\text{elem}}}{2\pi} + \frac{b_{i}^{\text{comp}}}{2\pi},
\]

elementary contribution is KNOWN

Notice: the differential running determines unification\(^1\).

\(^1\)provided no Landau pole is hit
Do you know your beta functions?
Or: how to check if Unification occurs

Compositeness vs Unif

Leading order **UNKNOWN**

Figure 1:

\[\frac{d}{d \ln \mu} \left(\frac{1}{\alpha_i} \right) = \frac{b_{i}^{\text{elem}}}{2\pi} + \frac{b_{i}^{\text{comp}}}{2\pi}, \]

elementary contribution is **KNOWN**

Our ignorance is partial

Notice: the differential running determines unification\(^1\). A good measure: \(R \equiv (b_1 - b_2)/(b_2 - b_3) \). Numerically, we have:

\(R_{\text{exp}} = 1.395 \pm 0.015 \) vs \(R_{\text{SM}}^{th} \approx 1.9 \) vs \(R_{\text{MSSM}}^{th} = 1.4 \) vs ??

\(^1\)provided no Landau pole is hit

Alvise Varagnolo Compo GUTs
Composite Higgs

New Strong Dynamics triggers G/K global symm breaking,
NGBs π s.t. $\pi \supset H$, with σ-model scale f

@ Low E: $\mathcal{L} = \mathcal{L}_{\text{elementary}}^{G_{\text{SM}}} + \mathcal{L}_{\text{composite}}^{G_{\text{SM}}} + \mathcal{L}_{\text{mixing}}^{G_{\text{SM}}}$

The mixing term will generate (CW) a $V_{\text{eff}}(\pi) \neq 0$. Fine Tuning measure: $\xi = v^2/f^2$. Resonances @ scale $m_\rho \sim \text{few TeV}$, inter-compo coupling: $g_\rho = m_\rho/f$, $g_{\text{elem}} \leq g_\rho \leq 4\pi$

Composite Top

A closer look: $\mathcal{L}_{\text{mixing}}^{G_{\text{SM}}} = \lambda_{\psi_L} \bar{\psi}_L O_{\psi_L} + \lambda_{\psi_R} \bar{\psi}_R O_{\psi_R} + g_i A_{i\mu} J^\mu$

Yukawa: $y_\psi \simeq \lambda_{\psi_L} \lambda_{\psi_R}/g_\rho \rightarrow \text{top mostly/totally composite. Must choose } t_R$, otherwise big troublesa with $Zb\bar{b}$

Also: $\hat{T} \simeq v^2/f^2 \rightarrow$ Better impose Custodial Symmetry $(SU(2)_L \times SU(2)_R)$ on the whole Strong Sector

aCan cure this by extending CS with LR parity. Check r-h coupling!
Outline

1. Motivations and Intro
 - SUSY & the ALTERNATIVES
 - Some tools

2. Model Building
 - The idea, and real life
 - Our pNGBs, our Exotics and the EWPTs

3. Some phenomenology
 - Some doubts
 - Some hope
Motivations and Intro
Model Building
Some phenomenology
Summary

The idea, and real life
Our pNGBs, our Exotics and the EWPTs

A way out

$G/K \rightarrow$ Composite stuff (i.e. Higgs, top, heavy resonances)

Agashe, Contino, Sundrum (2005) realized that if $G_{SM} \subset G$ simple \Rightarrow contribution of strong sector to b_is above compositeness scale becomes universal! ($b_i^{\text{compo}} \rightarrow b^{\text{compo}}$)

Then $b_i - b_j = b_i^{\text{elem}} - b_j^{\text{elem}}$ and we can compute! (modulo small corrections from Low E region, if K is not simple)

Equivalently: we subtract the contributions of composite modes to the differential running, i.e.

$$R(SM) \rightarrow R(SM \setminus \{\text{Composite stuff}\})$$

We are thus in a position to investigate Composite Unification.
A way out

\[G/K \rightarrow \text{Composite stuff (i.e. Higgs, top, heavy resonances)} \]

Agashe, Contino, Sundrum (2005) realized that if \[G_{SM} \subset G \text{ simple} \Rightarrow \text{contribution of strong sector to } b_i\text{s above compositeness scale becomes universal!} \ (b_i^{\text{compo}} \rightarrow b^{\text{compo}}) \]

Then \[b_i - b_j = b_i^{\text{elem}} - b_j^{\text{elem}} \] and we can compute! (modulo small corrections from Low E region, if \(K \) is not simple)

Equivalently: we subtract the contributions of composite modes to the differential running, i.e.

\[R(SM) \rightarrow R(SM \setminus \{\text{Composite stuff}\}) \]

We are thus in a position to investigate Composite Unification.

But careful: \(b^{\text{compo}} < 10 \), or you hit a Landau pole before \(M_{GUT} \)!
Requirements on G/K

(A) $G/K \rightarrow$ NGBs contain the Higgs, or a $(2, 2)_0$ repr of $SU(2)_L \times SU(2)_R \times U(1)'$

(B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$

(C) G a simple group s.t. $G_{SM} \subset G$

$A + B + C \Rightarrow \text{rank}(G) \geq 5$: $G = SO(10)$? Life’s not that easy…

Minimal rank sol’ns:

<table>
<thead>
<tr>
<th>$G \rightarrow K$</th>
<th>R_{NGB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SO(11) \rightarrow SO(7) \times SU(2) \times SU(2)$</td>
<td>$(7, 2, 2)$</td>
</tr>
<tr>
<td>$Sp(10) \rightarrow Sp(8) \times SU(2)$</td>
<td>$(8, 2)$</td>
</tr>
<tr>
<td>$SO(11) \rightarrow SO(10)$</td>
<td>10</td>
</tr>
</tbody>
</table>
Requirements on G/K

(A) $G/K \rightarrow$ NGBs contain the Higgs, or a $(2, 2)_0$ repr of $SU(2)_L \times SU(2)_R \times U(1)'$

(B) $K_{\text{min}} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$

(C) G a simple group s.t. $G_{\text{SM}} \subset G$

$A + B + C \Rightarrow \text{rank}(G) \geq 5$: $G = SO(10)$? Life’s not that easy…

Minimal rank sol’ns:

<table>
<thead>
<tr>
<th>$G \rightarrow K$</th>
<th>R_{NGB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SO(11) \rightarrow SO(7) \times SU(2) \times SU(2)$</td>
<td>$(7, 2, 2)$</td>
</tr>
<tr>
<td>$Sp(10) \rightarrow Sp(8) \times SU(2)$</td>
<td>$(8, 2)$</td>
</tr>
<tr>
<td>$SO(11) \rightarrow SO(10)$</td>
<td>10</td>
</tr>
</tbody>
</table>
Requirements on G/K

(A) $G/K \rightarrow$ NGBs contain the Higgs, or a $(2,2)_0$ repr of $SU(2)_L \times SU(2)_R \times U(1)'$

(B) $K_{\text{min}} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$

(C) G a simple group s.t. $G_{SM} \subset G$

$A + B + C \Rightarrow \text{rank}(G) \geq 5$: $G = SO(10)$? Life’s not that easy…

Simplest Sol’n:

<table>
<thead>
<tr>
<th>$G \rightarrow K$</th>
<th>R_{NGB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SO(11) \rightarrow SO(10)$</td>
<td>10</td>
</tr>
</tbody>
</table>

Repr of 10 under $K_{\text{min}} = (1,2,2)_0 + (3,1,1)_{-2/3} + (\bar{3},1,1)_{+2/3}$
Requirements on G/K

(A) $G/K \rightarrow \text{NGBs contain the Higgs, or a (2,2)_0 \text{ repr of}} \ SU(2)_L \times SU(2)_R \times U(1)'$

(B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$

(C) G a simple group s.t. $G_{SM} \subset G$

$A + B + C \Rightarrow \text{rank}(G) \geq 5$: $G = SO(10)$? Life’s not that easy…

Simplest Sol’n:

<table>
<thead>
<tr>
<th>$G \rightarrow K$</th>
<th>R_{NGB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SO(11) \rightarrow SO(10)$</td>
<td>10</td>
</tr>
</tbody>
</table>

Repr of 10 under $K_{min} = (1, 2, 2)_0 + (3, 1, 1)_{-2/3} + (\bar{3}, 1, 1)_{+2/3}$

Need to define hypercharge & to impose extra $U(1)_B \times U(1)_L$
Requirements on G/K

(A) $G/K \rightarrow$ NGBs contain the Higgs, or a $(2,2)_0$ repr of $SU(2)_L \times SU(2)_R \times U(1)'$

(B) $K_{min} = SU(3) \times SU(2)_L \times SU(2)_R \times U(1)'$

(C) G a simple group s.t. $G_{SM} \subset G$

$A + B + C \Rightarrow \text{rank}(G) \geq 5$: $G = SO(10)$? Life’s not that easy...

Simplest Sol’n:

<table>
<thead>
<tr>
<th>$G \rightarrow K$</th>
<th>R_{NGB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SO(11) \rightarrow SO(10)$</td>
<td>10</td>
</tr>
</tbody>
</table>

Repr of 10 under $K_{min} = (1,2,2)_0 + (3,1,1)_{-2/3} + (\bar{3},1,1)_{+2/3}$

Need to define hypercharge & to impose extra $U(1)_B \times U(1)_L$

To fit fermion Y & to prevent p-decay and too large ν masses
What about fermions?

Which repr of $SO(10)$ contains t_R? Obvious\(^2\) answer is: $\overline{16} \supset t_R$, as typical in canonical GUTs. Then, however, t_R comes with a plethora of new composite massless (before EWSB) states: exotics $\overline{16} = (x_R, t_R)$. In order to

- avoid experimental constraints on masses of extra fermions
- cancel anomalies

we need to pair them to a $16 \setminus t'_L = x_L$ of \textit{elementary} fields!

Consequence for unification: $R \rightarrow R(SM \setminus \{H, t_R, t'^c_R\})$

Bottom line: for K simple unification is guaranteed.

Numerically: $R \simeq 1.45$ vs. $R_{exp} = 1.395$ vs. $R_{SUSY} = 1.4$

Higher orders: \textit{hard} to evaluate, very model dependent.

\(^2\)But one can engineer, e.g., $t_R \subset 10$
The masses are predicted as follows:

\[m_h^2 \simeq N_x \frac{\lambda_x^4}{16\pi^2} v^2 \simeq (440\text{GeV})^2 (\lambda_x/2.5)^4, \]

\[m_T^2 \simeq N_g \frac{g_s^2}{16\pi^2} m_\rho^2 \simeq (1.2\text{TeV})^2 (m_\rho/4.5\text{TeV})^2, \]

\[m_x \simeq \lambda_x f \simeq 1.9\text{TeV} (\lambda_x/2.5) (f/750\text{GeV}). \]
The masses are predicted as follows:

\[m_h^2 \simeq N_x \frac{\lambda_x^4}{16\pi^2} v^2 \simeq (440 \text{GeV})^2 (\lambda_x/2.5)^4, \]

\[m_T^2 \simeq N_g \frac{g_s^2}{16\pi^2} m_\rho^2 \simeq (1.2 \text{TeV})^2 (m_\rho/4.5 \text{TeV})^2, \]

\[m_x \simeq \lambda_x f \simeq 1.9 \text{TeV} (\lambda_x/2.5) (f/750 \text{GeV}). \]

Important #1: couplings of pNGBs (⊃ H) come with factor \(\sqrt{1 - v^2/f^2} \). Numerically, \(f \simeq 750 \text{ GeV} \) easily realized (in region allowed by EWPTs) \(\Rightarrow \) factor 0.95 (lower possible).
The masses are predicted as follows:

\[m_h^2 \simeq N_x \frac{\lambda_x^4}{16\pi^2} v^2 \simeq (440\,\text{GeV})^2 (\lambda_x/2.5)^4 , \]
\[m_T^2 \simeq N_g \frac{g_s^2}{16\pi^2} m_\rho^2 \simeq (1.2\,\text{TeV})^2 (m_\rho/4.5\,\text{TeV})^2 , \]
\[m_x \simeq \lambda_x f \simeq 1.9\,\text{TeV} (\lambda_x/2.5) (f/750\,\text{GeV}) . \]

Important #1: couplings of pNGBs (⊃ H) come with factor \(\sqrt{1 - v^2/f^2} \). Numerically, \(f \simeq 750\,\text{GeV} \) easily realized (in region allowed by EWPTs) ⇒ factor 0.95 (lower possible). Important #2: bound from \(Zb\bar{b} \): \(m_{b'} > 1.4\,\text{TeV} \). \(\lambda_x \) must be smaller than \(g_\rho \), for \(V_{\text{eff}} \) computation to make sense.
We use **exact** formulae for $V_{\text{eff}}, m_H, m_T \ldots \Rightarrow$ numerics! But ...
Outline

1. Motivations and Intro
 - SUSY & the ALTERNATIVES
 - Some tools

2. Model Building
 - The idea, and real life
 - Our pNGBs, our Exotics and the EWPTs

3. Some phenomenology
 - Some doubts
 - Some hope
Motivations and Intro

Model Building

Some phenomenology

Summary

Some doubts

Some hope

T’s & Exotics’ Pheno @ LHC → to be revised!

<table>
<thead>
<tr>
<th></th>
<th>q^c</th>
<th>b'</th>
<th>l^c</th>
<th>ν'</th>
<th>e'</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SU(3)_C$</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>$SU(2)_L$</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$U(1)_Y$</td>
<td>$-\frac{1}{6}$</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>-1</td>
<td>$-\frac{1}{3}$</td>
</tr>
<tr>
<td>$U(1)_{BE}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>0</td>
</tr>
<tr>
<td>$U(1)_{BI}$</td>
<td>$-\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>$-\frac{2}{3}$</td>
</tr>
</tbody>
</table>

Mostly pair produced via gauge int’s: @ 14 TeV LHC cross section ~ 0.01 (0.05) pb for masses ~ 1 TeV for coloured scalars (fermions).

Depending on B, lightest state can be stable (baryon triality).

Assume T stable.

LHC produced: hadronizes $T^0 = T\bar{d}$ or $T^- = T\bar{u}$:

$T^0 \sim$ missing E_T;

$T^- \sim$ heavy μ

(both should come with pairs of t’s or b’s)

If N (mix of l^c and ν') stable:

missing $E_T + (t$’s & b’s pairs)

N can be DM candidate, but need to be mostly ν' to avoid direct detection & relic density (\neq SUSY annihil'n).

-Alvise Varagnolo

Compo GUTs
Higgs: surviving @ LHC

CMS 22/08: excluded SM Higgs for $140 \, \text{GeV} \leq m_H \leq 440 \, \text{GeV}$

The **good** properties of *our* Higgs:
- it’s typically **heavy** (from 400 GeV upwards)
- couplings & cross sections reduced wrt SM Higgs’
It’s been known for some years that it is possible to investigate Unification in Composite H & t scenarios, thus combining this elegant solution to the HP and the properties of GUTs. Now:
It’s been known for some years that it is possible to investigate Unification in Composite H & t scenarios, thus combining this elegant solution to the HP and the properties of GUTs. Now:

- explicit (albeit not UV-complete) model \rightarrow predictions
- H and t_R bring along partners lighter than compositeness scale (comparts), with fixed QN (modulo B)
- amount of FT is perfectly acceptable, if masses of comparts are $\leq 1 - 2 \ TeV$
- lightest of comparts might be stable; production @ LHC might be significant
Summary

It’s been known for some years that it is possible to investigate Unification in Composite H & t scenarios, thus combining this elegant solution to the HP and the properties of GUTs. Now:

- **explicit** (albeit not UV-complete) model \rightarrow predictions
- H and t_R bring along partners lighter than compositeness scale (comparts), with fixed QN (modulo B)
- amount of FT is perfectly acceptable, if masses of comparts are $\leq 1 - 2$ TeV
- lightest of comparts might be stable; production @ LHC might be significant (problem?)

to do list

- check attentively LHC signals: do we survive? more FT?
- attempt the construction of UV-completion
Until next time...