Tevatron Combination of SM Higgs Searches and Fourth Generation Limits

Satish Desai – Fermilab
For the CDF and DØ Collaborations

19th International Conference on Supersymmetry and Unification Of Fundamental Interactions
Fits and Constraints

- Electroweak symmetry breaking is a cornerstone of the standard model
- Higgs mechanism provides mass for the W and Z
- A consequence of this is the Higgs boson
- Mass is not predicted

\[M_H < 158 \text{ GeV (indirect constraints)} \]
\[M_H < 185 \text{ GeV (include LEP search)} \]
Run II Integrated Luminosity

Delivered Recorded 11.7 fb⁻¹

Today: Up to 8.6 fb⁻¹

10.4 fb⁻¹
For $M_H \lesssim 135$ GeV, $H \rightarrow bb$ dominates

Control bg with leptons from associated W/Z
Higgs Production and Decay

- For $M_H \approx 135$ GeV, $H \rightarrow WW$ dominates
- Control bg with leptons from W decays
Leave No Higgs Behind

<table>
<thead>
<tr>
<th>Channel</th>
<th>Luminosity (fb^{-1})</th>
<th>m_H range (GeV/c^2)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WH \rightarrow \ell\nu bb$ 2-jet channels</td>
<td>4x(TDT,LDT,ST,LDTX)</td>
<td>7.5</td>
<td>100-150</td>
</tr>
<tr>
<td>$WH \rightarrow \ell\nu bb$ 3-jet channels</td>
<td>2x(TDT,LDT,ST)</td>
<td>5.6</td>
<td>100-150</td>
</tr>
<tr>
<td>$ZH \rightarrow \nu\nu bb$ (TDT,LDT,ST)</td>
<td></td>
<td>7.8</td>
<td>100-150</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^- bb$</td>
<td>2x(TDT,LDT,ST)</td>
<td>7.7</td>
<td>100-150</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^- 2x(0$ jets,1 jet)+(2 or more jets)+(low-$m_{\ell\ell}$)+(e-τ_{had})+(\mu-τ_{had})</td>
<td>8.2</td>
<td>110-200</td>
<td>[10]</td>
</tr>
<tr>
<td>$WH \rightarrow W^+W^-$(same-sign leptons)+(tri-leptons)</td>
<td></td>
<td>8.2</td>
<td>110-200</td>
</tr>
<tr>
<td>$ZH \rightarrow ZW^+W^-$(tri-leptons with 1 jet)+(tri-leptons with 2 or more jets)</td>
<td></td>
<td>8.2</td>
<td>110-200</td>
</tr>
<tr>
<td>$H + X \rightarrow \tau^+\tau^-$ (1 jet)+(2 jets)</td>
<td></td>
<td>6.0</td>
<td>100-150</td>
</tr>
<tr>
<td>$WH \rightarrow \ell\nu\tau^+\tau^- /ZH \rightarrow \ell^+\ell^-\tau^+\tau^- (\ell-\ell\tau_{had})+(e-μ-τ_{had})+(\ell-τ_{had}-τ_{had})</td>
<td></td>
<td>6.2</td>
<td>110-150</td>
</tr>
<tr>
<td>$WH \rightarrow jbjj$ (GF,VBF) x(TDT,LDT)</td>
<td></td>
<td>4.0</td>
<td>100-150</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$ (CC,CP,CC-Conv,PC-Conv)</td>
<td></td>
<td>7.0</td>
<td>100-150</td>
</tr>
<tr>
<td>$t\bar{t}H \rightarrow WWbbbb$ (lepton)</td>
<td>4jet,5jet x(TTT,TTL,TTL,TTT,LDT,LDT)</td>
<td>6.3</td>
<td>100-150</td>
</tr>
<tr>
<td>$t\bar{t}H \rightarrow WWbbbb$ (no lepton)</td>
<td>(low met,high met) x(2 tags,3 or more tags)</td>
<td>5.7</td>
<td>100-150</td>
</tr>
</tbody>
</table>

TABLE III: Luminosity, explored mass range and references for the different processes and final states ($\ell = e, \mu$) for the D0 analyses.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Luminosity (fb^{-1})</th>
<th>m_H range (GeV/c^2)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WH \rightarrow \ell\nu bb$ (LST,LDT,2,3 jet)</td>
<td></td>
<td>8.5</td>
<td>100-150</td>
</tr>
<tr>
<td>$ZH \rightarrow \nu\nu bb$ (LST,LDT)</td>
<td></td>
<td>8.4</td>
<td>100-150</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^- bb$ (TST,TLD,ee,ee$\mu\mu$,ee$\gamma\gamma$,$\mu\mu$,$\gamma\gamma$)</td>
<td></td>
<td>8.6</td>
<td>100-150</td>
</tr>
<tr>
<td>$H + X \rightarrow \ell^+\tau^-_{had}$</td>
<td></td>
<td>4.3</td>
<td>105-200</td>
</tr>
<tr>
<td>$VH \rightarrow \ell^+\ell^- + X$</td>
<td></td>
<td>5.3</td>
<td>115-200</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^+\nu$ (0,1,2+ jet)</td>
<td></td>
<td>8.1</td>
<td>115-200</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^- \rightarrow \mu\nu\tau_{had}$</td>
<td></td>
<td>7.3</td>
<td>115-200</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^- \rightarrow \ell\nu j\bar{j}$</td>
<td></td>
<td>5.4</td>
<td>130-200</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td></td>
<td>8.2</td>
<td>100-150</td>
</tr>
</tbody>
</table>
Tevatron Combined SM and 4th Gen Higgs Limits

Leave No Higgs Behind

Many different channels from both CDF and DØ

For more details, see talks by X. Bu, G. Facini, S. Shalhout, R. Nayyar

<table>
<thead>
<tr>
<th>Channel</th>
<th>Luminosity (fb⁻¹)</th>
<th>m_H range (GeV/c²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WH \rightarrow \ell\nu b\bar{b}$ 2-jet channels</td>
<td>$4 \times (\text{TDT, LDT, ST, LDTX})$</td>
<td>7.5</td>
<td>100-150</td>
</tr>
<tr>
<td>$WH \rightarrow \ell\nu b\bar{b}$ 3-jet channels</td>
<td>$2 \times (\text{TDT, LDT, ST})$</td>
<td>5.6</td>
<td>100-150</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^- b\bar{b}$</td>
<td>(TDT, LDT, ST)</td>
<td>7.8</td>
<td>100-150</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^- b\bar{b}$</td>
<td>$2 \times (\text{TDT, LDT, ST})$</td>
<td>7.7</td>
<td>100-150</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^-$</td>
<td>$2 \times (0 \text{ jets, 1 jet} + (2 \text{ or more leptons}))$</td>
<td>8.2</td>
<td>110-200</td>
</tr>
<tr>
<td>$WH \rightarrow WW^+W^-$ (same-sign leptons)+(tri-leptons)</td>
<td>$2 \times (0 \text{ jets, 1 jet} + (2 \text{ or more leptons}))$</td>
<td>8.2</td>
<td>110-200</td>
</tr>
<tr>
<td>$ZH \rightarrow ZW^+W^-$ (tri-leptons with 1 jet)</td>
<td>$2 \times (0 \text{ jets, 1 jet} + (2 \text{ or more leptons}))$</td>
<td>8.2</td>
<td>110-200</td>
</tr>
<tr>
<td>$H + X \rightarrow \tau^+\tau^-$ (1 jet)+(2 jets)</td>
<td>6.0</td>
<td>100-150</td>
<td>13</td>
</tr>
<tr>
<td>$WH \rightarrow \ell\nu\tau^+\tau^-/ZH \rightarrow \ell^+\ell^+\tau^-\tau^-$ (1 jet)+(2 jets)</td>
<td>5.2</td>
<td>110-150</td>
<td>14</td>
</tr>
<tr>
<td>$WH + ZH \rightarrow jjbb$ (GF,VBF)×(TDT,LDT)</td>
<td>4.0</td>
<td>100-150</td>
<td>15</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$ (CC,CP,CC-Conv,PC-Conv)</td>
<td>7.0</td>
<td>100-150</td>
<td>16</td>
</tr>
<tr>
<td>$ttH \rightarrow WWbbbb$ (lepton)</td>
<td>$(4\text{jet, 5jet}) \times (\text{TDT,LDT})$</td>
<td>6.3</td>
<td>100-150</td>
</tr>
<tr>
<td>$ttH \rightarrow WWbbbb$ (no lepton)</td>
<td>$(\text{low m_{tt}, high m_{tt}}) \times (2 \text{ tags, 3 or more tags})$</td>
<td>5.7</td>
<td>100-150</td>
</tr>
</tbody>
</table>

TABLE III: Luminosity and m_H range for different analyses of Higgs searches ($\ell = e, \mu$) for the DØ analyses.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Luminosity (fb⁻¹)</th>
<th>m_H range (GeV/c²)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$WH \rightarrow \ell\nu b\bar{b}$ 2-jet channels</td>
<td>(LST, LDT, 2,3 jet)</td>
<td>7.5</td>
<td>100-150</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell\nu b\bar{b}$ (LST,LDT)</td>
<td>8.4</td>
<td>100-150</td>
<td>19</td>
</tr>
<tr>
<td>$ZH \rightarrow \ell^+\ell^- b\bar{b}$</td>
<td>(TST,LDT,ee,ee,μμ,ee,μγ,μγ,μγ)</td>
<td>8.6</td>
<td>100-150</td>
</tr>
<tr>
<td>$H + X \rightarrow \ell^+\tau^\pm hj$</td>
<td>4.3</td>
<td>105-200</td>
<td>21</td>
</tr>
<tr>
<td>$VH \rightarrow \ell^+\ell^- + X$</td>
<td>5.3</td>
<td>115-200</td>
<td>22</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\nu$</td>
<td>$(0,1,2+ \text{ jet})$</td>
<td>8.1</td>
<td>115-200</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^-\nu$</td>
<td>7.3</td>
<td>115-200</td>
<td>24</td>
</tr>
<tr>
<td>$H \rightarrow W^+W^- \rightarrow \ell^+\ell^-j$</td>
<td>5.4</td>
<td>130-200</td>
<td>25</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>8.2</td>
<td>100-150</td>
<td>26</td>
</tr>
</tbody>
</table>
Search for $H \rightarrow WW$ (example)

- Exploit low S/B regions without diluting more sensitive subsamples
- Selection defined by final state
- Train multivariate discriminants to extract more sensitivity
Combined Discriminants

\(M_H: 115 \text{ GeV} \)

Tevatron Run II Preliminary, \(L \leq 8.6 \text{ fb}^{-1} \)

\(m_H = 115 \text{ GeV/c}^2 \)

\(\log_{10}(s/b) \)

CDF + D0 Run II Preliminary, \(L \leq 8.6 \text{ fb}^{-1} \)

\(m_H = 115 \text{ GeV/c}^2 \)

July 17, 2011
Combined Discriminants

\[M_H : 165 \text{ GeV} \]

Tevatron Run II Preliminary, \(L \leq 8.6 \text{ fb}^{-1} \)

\[m_H = 165 \text{ GeV/c}^2 \]

Events

\[\log_{10}(s/b) \]

Tevatron Run II Preliminary, \(L \leq 8.6 \text{ fb}^{-1} \)

Cumulative Events

Integrated Expected Signal

Tevatron Run II Preliminary, \(L \leq 8.6 \text{ fb}^{-1} \)

CDF + D0 Run II Preliminary, \(L \leq 8.6 \text{ fb}^{-1} \)
Systematic Uncertainties

- Limits extracted using shape comparisons of final discriminant
 - Important to consider
 - Normalization uncertainties
 - Shape uncertainties
 - Track correlations across channel and experiment

<table>
<thead>
<tr>
<th>Source</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>2%</td>
</tr>
<tr>
<td>Jet Energy Scale</td>
<td>1-3%</td>
</tr>
<tr>
<td>Jet Identification</td>
<td>2%</td>
</tr>
<tr>
<td>Multijet Estimate</td>
<td>0-25%</td>
</tr>
<tr>
<td>b-tagging Efficiency</td>
<td>1-6%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>6%</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>6-20%</td>
</tr>
</tbody>
</table>
Getting the Results

- Use Bayesian method
- Use CLs as cross check
- Agree within 2% on average (at worst 10% depending on M_H)

Bayesian Method

\[\prod_{i} \text{Poisson} \left(x_i \mid B_i(\theta) + RS(\theta) \right) \]

\[
0.95 = \frac{\int_{0}^{\text{limit}} dR \int L(RS, B, x, \theta) d\theta}{\int_{0}^{\infty} dR \int L(RS, B, x, \theta) d\theta}
\]
The Log Likelihood Ratio

Tevatron RunII Preliminary

$L \leq 8.6 \text{ fb}^{-1}$

LLR from CLs method

July 17, 2011
Tevatron Combined SM and 4th Gen Higgs Limits

Excluded Regions:
- Observed: 100-109 and 156-177 GeV
- Expected: 100-108 and 148-181 GeV

Limits at $M_H = 115$ GeV:
- Observed: $1.16 \times \sigma_{SM}$
- Expected: $1.17 \times \sigma_{SM}$
Fourth Generation Models

- Additional quark loops enhance $\sigma(gg\rightarrow H)$ by factor of 9
- Higgs mass up to 300 GeV allowed by indirect constraints

- Two scenarios based on mass of extra leptons
 - Low mass exclusion: 124 – 286 GeV
 - High mass exclusion: 124 – 300 GeV
Looking to the Future

Already recorded more than 10 fb^{-1}

2xCDF Preliminary Projection, m_H=115 GeV

Projected Improvements
Summary

- We already exclude a significant part of the M_H range allowed by electroweak fits
- Tevatron reaching sensitivity in dominant decay modes in the most interesting region
- Look forward to an exciting set of results in 2012

http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm
http://www-cdf.fnal.gov/physics/new/hdg/hdg.html
Summary

- We already exclude a significant part of the M_H range allowed by electroweak fits
- Tevatron reaching sensitivity in dominant decay modes in the most interesting region
- Look forward to an exciting set of results in 2012

Stay Tuned!!!

http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.htm
http://www-cdf.fnal.gov/physics/new/hdg/hdg.html
Between the High and the Low

Tevatron Combined SM and 4th Gen Higgs Limits

High mass channels from Moriond 2011

Sensitivity at $M_H = 135$ GeV:
$2.2 \times \sigma_{SM}$

Sensitivity at $M_H = 135$ GeV:
$2.? \times \sigma_{SM}$
The Big Picture

Tevatron Combined SM and 4th Gen Higgs Limits

Tevatron Run II Preliminary, L ≤ 8.6 fb⁻¹

- **LEP Exclusion**
- **Tevatron Exclusion**

July 17, 2011

ATLAS Preliminary

- **Observed**
- **Expected**

∫ L dt = 1.0-2.3 fb⁻¹

CMS Preliminary, √s = 7 TeV

- **Combined observed**
- **Combined expected**

Experimental Results

- **H → bb**
- **H → WW**
- **H → ZZ → 4l**
- **H → ZZ → 2l 2τ**
- **H → ZZ → 2l 2q**

Tevatron Run II Preliminary H → bb Combination, L ≤ 8.6 fb⁻¹

- **Expected**
- **Observed**
- **±1σ Expected**
- **±2σ Expected**

July 17, 2011

SM = 1

Tevatron Exclusion

Higgs boson mass (GeV/c²)

100 110 120 130 140 150 160 170 180 190 200

m_H (GeV/c²)

10 1 1 200 180 160 140 120 100

95% CL Limit/SM

10 1 1

Higgs boson mass (GeV/c²)

100 200 300 400 500 600

100 110 120 130 140 150

m_H (GeV/c²)

10 1 1

95% CL Limit/SM

10 1 1
1-CLs

Tevatron RunII Preliminary

L ≤ 8.6 fb⁻¹

95% C.L.

Tevatron Combined SM and 4th Gen Higgs Limits
Tevatron RunII Preliminary

CLs

L ≤ 8.6 fb⁻¹

CLs Observed

CLs Expected

Expected ±1 σ

Expected ±2 σ

1-CLs:

68%

95%

99.5%

July 17, 2011

m_H (GeV/c²)