Search for WW/WZ Resonant Production at DØ

James Kraus
University of Mississippi
For the DØ Collaboration
Motivation

• The standard model (SM) is widely believed to be a low-energy effective theory of physics
 – New physics expected at TeV scale
• New, heavy particles may decay to WW or WZ
 – See as resonances in SM diboson spectrum
• Look combine 3 different final states
 – $WZ \rightarrow l\nu ll$ in 4.1 fb$^{-1}$
 – $WW/WZ \rightarrow l\nu jj$ in 5.4 fb$^{-1}$
 – $WZ \rightarrow lljj$ in 5.4 fb$^{-1}$
BSM Models

• We compare data to SM expectations and to Beyond the SM (BSM) theories

• The sequential SM (SSM) with a $W' \rightarrow WZ$
 - Assumes additional SU(2) group having heavy resonances with SM-like couplings

• Randall-Sundrum (RS) Models w/graviton $G \rightarrow WW$
 - In RS Models, a warped extra-dimension exists that the graviton propagates through
 - Massive Kaluza-Klein Modes of the graviton may exist at the \simTeV scale, observable at DØ
DØ Detector

- $p\bar{p}$ collisions
 - $\sqrt{s} = 1.96$ TeV
 - 1 bunch crossing per 396 ns
Signal and Background Modeling

- Principal backgrounds Z+jets, W+jets, t\bar{t}, single top, SM dibosons and multijet events
 - Z+jets, W+jets, t\bar{t} modeled using ALPGEN
 - Single top modeled with COMPHEP
 - SM diboson production modeled using PYTHIA
 - Multijets estimated using data

- Both SSM W' and RS graviton modeled w/ PYTHIA
 - No interference between W and W'
 - Signal normalized to NNLO
Lepton ID

- Electrons reconstructed in Central and Endcap Calorimeters (CC and EC)
 - > 95% in EM calorimeter
 - Calorimeter and Track Isolation
 - Multivariate discriminant to reject jets
 - Consistent with track from Primary Vertex

- Muons reconstructed by matching track in muon chambers to track in inner tracker
 - Calorimeter and Track Isolation
Jet ID and MET

- Jets reconstructed in CC and EC using iterative midpoint cone algorithm
 - Reject jets matched to electrons
 - Cone width $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.5$
- Missing Transverse Energy (MET) found by taking vector sum of all calorimeter cell energies
 - Corrections for muon momentum, Jet and electron energy scales
WZ → lνll Selection Criteria

- The leptons must have $p_T > 20$ GeV
- MET > 30 GeV
- Dilepton mass consistent with Z
 - $80 \ (70) \ GeV < M_{ee(\mu\mu)} < 102 \ (110) \ GeV$
- Expect W, Z boosted, so require
 - $\Delta R > 1.2$ between W lepton and Z daughters
WW/WZ → lνjj Selection Criteria

- Exactly one e or µ
- The lepton must have $p_T > 20$ GeV
- MET > 20 GeV
- $\Delta\phi(l,\text{MET}) < 1.5$ and p_T of $l+$MET system > 100 GeV
- Either
 - Dijets with 70 GeV $< M_{jj} < 115$ GeV and $\Delta R < 1.5$
 - Single jet with jet mass $= \sqrt{(E_j^2-p_j^2)} > 70$ GeV
WZ → lljj Selection Criteria

- Either ee or \(\mu \mu \) pair
- The leptons must have \(p_T > 20 \) GeV
- MET < 50 GeV
- \(70 \text{ GeV} < M_{ll} < 110 \text{ GeV} \)
- \(\Delta R(l,l) < 1.5 \) and dilepton \(p_T > 100 \) GeV
- Either
 - Dijets with \(60 \text{ GeV} < M_{jj} < 105 \text{ GeV} \) and \(\Delta R < 1.5 \)
 - Single jet with jet mass = \(\sqrt{(E_j^2 - p_j^2)} > 60 \) GeV
High/Low Mass Regions

- Divide W'/G samples for limit setting into low mass (≤ 450 GeV) and high mass (>450 GeV) regions
 - Low mass limits include all events passing cuts
 - High mass limit requires, for lνjj and lljj
 - $\Delta\phi(l,\text{MET}) < 1.0$ and p_T of $l+$MET system > 150 GeV
 - $\Delta R(l,l) < 1.0$ and dilepton $p_T > 150$ GeV

High Mass Event Sample Composition

<table>
<thead>
<tr>
<th>Process</th>
<th>Single lepton sample</th>
<th>Dilepton sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z+$jets</td>
<td>3.6 ± 0.2</td>
<td>7.9 ± 0.8</td>
</tr>
<tr>
<td>$W+$jets</td>
<td>124.5 ± 20.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Top</td>
<td>22.9 ± 2.5</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Multijet</td>
<td>4.6 ± 0.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diboson</td>
<td>27.6 ± 1.4</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>Background sum</td>
<td>183.2 ± 24.5</td>
<td>8.7 ± 0.8</td>
</tr>
<tr>
<td>Data</td>
<td>174</td>
<td>8</td>
</tr>
</tbody>
</table>
Limits Setting

- Limits set using semi-frequentist method
- Log-Likelihood Ratio (LLR) based on Poisson statistics
 - Diboson mass distribution
 - Integrate over LLR in pseudo-experiments to set confidence limits for background (CL$_b$) and signal+background (CL$_{s+b}$)
- 95% C.L. exclusion limit set where CL$_{s+b}$/CL$_b$ = 0.05
W' Limit Setting

- Limits on WZ resonance use 50 GeV bin width
- In SSM, exclude 95% CL 180 GeV < M(W') < 690 GeV
- Assume linear relation between resonance mass and total W' width and that the intrinsic width is less than experimental resolution
 - Valid for W'WZ coupling strengths up to 10 times the SSM value
Graviton Limit Setting

- Limits on WW resonance also use 50 GeV binning.
- For RS graviton, assume $k/M_{Pl} = 0.1/\sqrt{8\pi}$, where k is the curvature scale of the warped extra dimension and M_{Pl} is the Planck mass.
- At 95% C.L, we exclude $300 \text{ GeV} < M(G) < 754 \text{ GeV}$
Summary

- Have set limits on WW and WZ resonances with 4.1-5.4 fb\(^{-1}\) of integrated luminosity at DØ

\[180 \text{ GeV} < M(W') < 690 \text{ GeV}\]

\[300 \text{ GeV} < M(G) < 754 \text{ GeV}\]