Updated Measurement of the Anomalous Like-sign Dimuon Asymmetry at D0

SUSY 2011: 19th International Conference on Supersymmetry and Unification of Fundamental Interactions
Fermilab, Illinois, USA
August 30th 2011

Mark Williams
Fermilab International Fellow
Lancaster University, UK
The Tevatron (you are here!)

Collides protons and antiprotons at centre-of-mass energy 1.96 TeV;

Accelerator performance better than ever in 2011 – learning from the past;

In final push before collisions stop at the end of September 2011.
Experimental Strengths

D0 Experiment

Central tracking detector (silicon, scintillating fibers): impact parameter (IP) resolution $\sim 35 \mu m$;

Wide acceptance in three-layered muon system ($|\eta| < 2.2$);

Thick shielding before muon system – hadronic punch-though suppressed.

Regular reversal of toroid (muon-system) and solenoid (tracker) magnet polarities – cancels many detector asymmetries.
Neutral $B^0_{(q=d,s)}$ mesons mix into their antiparticles via box diagrams:

Process **not CP symmetric** – $R(B^0_q \rightarrow \bar{B}^0_q) \neq R(\bar{B}^0_q \rightarrow B^0_q)$ – due to complex phase $\phi_{(d,s)}$ in quark mixing matrix, but…

…SM prediction of resulting asymmetry is **tiny**, much smaller than experimental precision. **New particles** entering loops can enhance this asymmetry significantly.

Measure CPV through asymmetry of decay products.

Flavor-specific semileptonic asymmetries defined for both B^0_s and B^0_d:

$$\alpha^q_{sl} = \frac{\Gamma(\bar{B}^0_q \rightarrow B^0_q \rightarrow \mu^+X) - \Gamma(B^0_q \rightarrow \bar{B}^0_q \rightarrow \mu^-X)}{\Gamma(\bar{B}^0_q \rightarrow B^0_q \rightarrow \mu^+X) + \Gamma(B^0_q \rightarrow \bar{B}^0_q \rightarrow \mu^-X)}$$

$$= \frac{\Delta \Gamma_q}{\Delta M_q} \tan \phi_q$$

Physical parameters characterizing B^0_q system
Measuring CPV in Mixing

D0 experiment measures an inclusive asymmetry, with contributions from both B^0_d and B^0_s:

$$a^b_{sl} = \frac{N(\bar{B}^0 \rightarrow \mu^+X) - N(B^0 \rightarrow \mu^-X)}{N(\bar{B}^0 \rightarrow \mu^+X) + N(B^0 \rightarrow \mu^-X)} = C_d a^d_{sl} + C_s a^s_{sl}$$

More B^0_d produced, but most decay before mixing: $C_d \approx C_s \approx 0.5$

Challenge: separate signal (semileptonic mixed decays of B mesons) from the many other muon-producing backgrounds.

To suppress such backgrounds, require second muon of the same charge:

$$A^b_{sl} = \frac{N(b\bar{b} \rightarrow \mu^+\mu^+)}{N(b\bar{b} \rightarrow \mu^+\mu^+)} - \frac{N(b\bar{b} \rightarrow \mu^-\mu^-)}{N(b\bar{b} \rightarrow \mu^-\mu^-)} = a^b_{sl} = (0.028 \pm 0.006)\% in S.M.$$

We therefore have two ways to extract a^b_{sl}, and take advantage of the correlated backgrounds by combining the two measurements.
Analysis Strategy

1) Measure ‘raw’ asymmetries by counting single muons (n^{\pm}) and dimuon events ($N^{\pm\pm}$);

2) Express in terms of a^b_{sl}:

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-} = \sum_{i=0}^{5} f_{\mu}^i \left(f_s^i (c_b a^b_{sl} + \delta_i) + f_{k}^i a_k^i + f_{\pi}^i a_{\pi}^i + f_{p}^i a_p^i \right)$$

- **Raw asymmetry (event counting)**
- **Weighted average over bins of muon p_T**
- **Asymmetry from heavy-flavor decays**
- **Asymmetries from backgrounds and detector effects**
Analysis Strategy

1) Measure ‘raw’ asymmetries by counting single muons \((n^\pm)\) and dimuon events \((N^{\pm\pm})\);

2) Express in terms of \(a_{\text{sl}}^b\):

\[
a \equiv \frac{n^+ - n^-}{n^+ + n^-} = \sum_{i=0}^{5} f^i \mu \left\{ f^i_s (c_b a_{\text{sl}}^b + \delta_i) + f^i_k a^i_k + f^i_\pi a^i_\pi + f^i_p a^i_p \right\}
\]

Asymmetries from backgrounds and detector effects

Residual muon reconstruction asymmetries (almost entirely cancelled by magnet polarity reversal)

Fraction

Charge asymmetry

Kaon DIF and punch-through

Pion DIF and punch-through

...proton punch-through
Analysis Strategy

1) Measure ‘raw’ asymmetries by counting single muons (n^\pm) and dimuon events ($N^{\pm\pm}$);

2) Express in terms of a^b_{sl}:

$$a \equiv \frac{n^+ - n^-}{n^+ + n^-} = \sum_{i=0}^{5} f_i^\mu \left\{ f_s^i (c_b a^b_{sl} + \delta_i) + f_k^i a_k^i + f_\pi^i a_\pi^i + f_p^i a_p^i \right\}$$

- Asymmetry from heavy-flavor decays
- Remaining fraction of muons after kaon, pion, proton components taken into account:
 i.e. “Heavy Flavor Fraction”
- Dilution factor (muons from charge symmetric HF processes)
- What we want to extract

Similar expression for dimuon case. Many BG quantities are the same, or highly correlated, e.g. presence of second muon doesn’t change kaon asymmetry a_k^i.
3) Measure all quantities $f_{k,\pi,p}\,^i,\, a_{k,\pi,p}\,^i,\, \delta_i$ in data, with limited input from simulation;

$\sim 15\%$ muons from kaons

$= +0.776 \pm 0.021 \%$

asymmetry from kaons
3) Measure all quantities $f_{k, \pi, p}^i$, $a_{k, \pi, p}^i$, δ_i in data, with limited input from simulation;

\[
\begin{align*}
\text{~15\% muons from kaons} & \quad D\bar{O}, 9.0 \text{ fb}^{-1} \\
\text{~30\% muons from pions} & \quad D\bar{O}, 9.0 \text{ fb}^{-1}
\end{align*}
\]
3) Measure all quantities $f_{k,\pi,p}^i$, $a_{k,\pi,p}^i$, δ_i in data, with limited input from simulation;

- $\sim 15\%$ muons from kaons
- $\sim 30\%$ muons from pions
- $\sim 0.4\%$ `muons' from protons

$= +0.776 \pm 0.021 \%$ asymmetry from kaons
$= +0.007 \pm 0.027 \%$ asymmetry from pions
$= -0.014 \pm 0.022 \%$ asymmetry from protons
Analysis Strategy

3) Measure all quantities \(f^i_{k,\pi,\rho}, a^i_{k,\pi,\rho}, \delta_i \) in data, with limited input from simulation;

Contribution from residual muon reconstruction asymmetry:

\[
\sum_i (1 - f^i_k - f^i_\pi - f^i_\rho) \delta_i = -0.047 \pm 0.012 \%
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>inclusive muon</th>
<th>like-sign dimuon</th>
</tr>
</thead>
<tbody>
<tr>
<td>((f_K a_K \text{ or } F_K A_K) \times 10^2)</td>
<td>(+0.776 \pm 0.021)</td>
<td>(+0.633 \pm 0.031)</td>
</tr>
<tr>
<td>((f_\pi a_\pi \text{ or } F_\pi A_\pi) \times 10^2)</td>
<td>(+0.007 \pm 0.027)</td>
<td>(-0.002 \pm 0.023)</td>
</tr>
<tr>
<td>((f_p a_p \text{ or } F_p A_p) \times 10^2)</td>
<td>(-0.014 \pm 0.022)</td>
<td>(-0.016 \pm 0.019)</td>
</tr>
<tr>
<td>([(1 - f_{\text{bkg}}) \delta \text{ or } (2 - F_{\text{bkg}}) \Delta] \times 10^2)</td>
<td>(-0.047 \pm 0.012)</td>
<td>(-0.212 \pm 0.030)</td>
</tr>
<tr>
<td>((a_{\text{bkg}} \text{ or } A_{\text{bkg}}) \times 10^2)</td>
<td>(+0.722 \pm 0.042)</td>
<td>(+0.402 \pm 0.053)</td>
</tr>
<tr>
<td>((a \text{ or } A) \times 10^2)</td>
<td>(+0.688 \pm 0.002)</td>
<td>(+0.126 \pm 0.041)</td>
</tr>
<tr>
<td>([(a - a_{\text{bkg}}) \text{ or } (A - A_{\text{bkg}})] \times 10^2)</td>
<td>(-0.034 \pm 0.042)</td>
<td>(-0.276 \pm 0.067)</td>
</tr>
</tbody>
</table>

Background dominated

Significantly different from zero
4) Account for dilution from charge-symmetric processes (i.e. determine coefficients c_b, C_b):

<table>
<thead>
<tr>
<th>Process</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1 $b \rightarrow \mu^- X$</td>
<td>$w_1 = 1$</td>
</tr>
<tr>
<td>T_{1a} $b \rightarrow \mu^- X$ (nos)</td>
<td>$w_{1a} = (1 - \chi_0)w_1$</td>
</tr>
<tr>
<td>T_{1b} $\bar{b} \rightarrow b \rightarrow \mu^- X$ (osc)</td>
<td>$w_{1b} = \chi_0 w_1$</td>
</tr>
<tr>
<td>T_2 $b \rightarrow c \rightarrow \mu^+ X$</td>
<td>$w_2 = 0.096 \pm 0.012$</td>
</tr>
<tr>
<td>T_{2a} $b \rightarrow c \rightarrow \mu^+ X$ (nos)</td>
<td>$w_{2a} = (1 - \chi_0)w_2$</td>
</tr>
<tr>
<td>T_{2b} $b \rightarrow \bar{b} \rightarrow c \rightarrow \mu^+ X$ (osc)</td>
<td>$w_{2b} = \chi_0 w_2$</td>
</tr>
<tr>
<td>T_3 $b \rightarrow c \bar{c} q$ with $c \rightarrow \mu^+ X$ or $\bar{c} \rightarrow \mu^- X$</td>
<td>$w_3 = 0.064 \pm 0.006$</td>
</tr>
<tr>
<td>T_4 $\eta, \omega, \rho^0, \phi(1020), J/\psi, \psi' \rightarrow \mu^+ \mu^-$</td>
<td>$w_4 = 0.021 \pm 0.002$</td>
</tr>
<tr>
<td>T_5 $b \bar{b} c \bar{c}$ with $c \rightarrow \mu^+ X$ or $\bar{c} \rightarrow \mu^- X$</td>
<td>$w_5 = 0.013 \pm 0.002$</td>
</tr>
<tr>
<td>T_6 $c \bar{c}$ with $c \rightarrow \mu^+ X$ or $\bar{c} \rightarrow \mu^- X$</td>
<td>$w_6 = 0.675 \pm 0.101$</td>
</tr>
</tbody>
</table>

Weights measured using simulation
This analysis uses LEP value for χ_0, following recent CDF update.

Results:
- $c_b = 0.061 \pm 0.007$
- $C_b = 0.474 \pm 0.032$

Inclusive muon sample dominated by charge-symmetric backgrounds (94%)
Dimuon sample has a large contribution (47%) from mixed B mesons (remember: around 50% each of B^0_d and B^0_s)
Results with 9fb$^{-1}$

Final asymmetry from both samples:

From inclusive muon sample: \[A^b_{sl} = [-1.04 \pm 1.30 \text{ (stat.)} \pm 2.31 \text{ (syst.) }] \% \]
(2.041 x 109 muons)

From like-sign dimuon sample: \[A^b_{sl} = [-0.808 \pm 0.202 \text{ (stat.)} \pm 0.222 \text{ (syst.) }] \% \]
(6.019 x 106 muons)

Now use linear combination of inclusive and dimuon asymmetries, \(A' = A - \alpha a \) with \(\alpha = 0.89 \) chosen to minimise total uncertainty on \(A^b_{sl} \):

\[A^b_{sl} = [-0.787 \pm 0.172 \text{ (stat.)} \pm 0.093 \text{ (syst.) }] \% \]

This result differs from the SM prediction by 3.9\(\sigma \)

Systematic uncertainty reduces significantly due to extra information in (background dominated) inclusive muon sample
Use *sample composition* and *mixing probability* to express as constraint in \((a^d_{sl}, a^s_{sl})\) plane.

Results consistent with previous measurements of flavor-specific asymmetries.
Comparison with Previous Result

Previous D0 measurement
PRD 82, 032001 (2010) (6.1fb⁻¹)

First 6.1fb⁻¹, new technique:

Final 2.9fb⁻¹, new technique:

So what’s new?

- Event selection optimized:
 - Looser minimum $|p_z|$ cut (6.4→5.4 GeV) based on new study of detector thickness;
 - Tighter match required between muon track and central track – reduces BG contribution from D.I.F.;
- New method to extract ratio of kaon fractions in two samples $R_k = F_k/f_k$: eliminates dependence on mass resolution, and better quantifies correlations.
- Second, independent channel used to measure R_k: consistent results found.
Cross-Checks

Measured inclusive muon asymmetry a is dominated by background: should match a_{bkg}:

Dimuon asymmetry versus $M(\mu\mu)$ – inconsistent with SM, but consistent with measured A_{sl}^b.

SUSY Conference
30th August 2011
Cross-Checks

Measured inclusive muon asymmetry a is dominated by background: should match a_{bkg}:

Dimuon asymmetry versus $M(\mu\mu)$ – inconsistent with SM, but consistent with measured A_{sl}^{b}.
Cross-Checks

Measured inclusive muon asymmetry a is dominated by background: should match a_{bkg}:

- Dimuon asymmetry versus $M(\mu\mu)$ – inconsistent with SM, but consistent with measured A_{sl}^b.

Measurement also repeated with many different requirements to enhance/suppress backgrounds. Final A_{sl}^b consistent in all samples (Total $\chi^2 = 16$ for 18 different tests)
Dependence on Impact Parameter

Muon impact parameter strongly influences:

Heavy flavor fraction

- Data (points) vs MC (line)
- Non-HF fraction

Fraction of `oscillated' B^0_q mesons

By dividing into two samples corresponding to $\text{IP}(\mu) < 120\mu m$ and $\text{IP}(\mu) > 120\mu m$, we can:

1) Confirm stable measurement in background enhanced and suppressed samples;
2) Test for larger asymmetry from B^0_d or B^0_s mesons:

For $\text{IP}(\mu) < 120\mu m$:

$$A^{b}_{sl} = (0.397 \pm 0.053)a^{d}_{sl} + (0.603 \pm 0.053)a^{s}_{sl}$$

For $\text{IP}(\mu) > 120\mu m$:

$$A^{b}_{sl} = (0.728 \pm 0.030)a^{d}_{sl} + (0.272 \pm 0.030)a^{s}_{sl}$$

DØ, 9.0 fb$^{-1}$
Dependence on Impact Parameter

<table>
<thead>
<tr>
<th>Quantity</th>
<th>$IP_{>120}$</th>
<th>$IP_{<120}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_K \times 10^2$</td>
<td>5.19 ± 0.37</td>
<td>17.64 ± 0.27</td>
</tr>
<tr>
<td>$f_\pi \times 10^2$</td>
<td>5.65 ± 0.40</td>
<td>34.72 ± 1.86</td>
</tr>
<tr>
<td>$f_p \times 10^2$</td>
<td>0.05 ± 0.03</td>
<td>0.45 ± 0.20</td>
</tr>
<tr>
<td>$F_K \times 10^2$</td>
<td>4.48 ± 4.05</td>
<td>21.49 ± 0.62</td>
</tr>
<tr>
<td>$F_\pi \times 10^2$</td>
<td>4.43 ± 3.95</td>
<td>40.47 ± 2.26</td>
</tr>
<tr>
<td>$F_p \times 10^2$</td>
<td>0.03 ± 0.05</td>
<td>0.59 ± 0.23</td>
</tr>
<tr>
<td>$f_S \times 10^2$</td>
<td>89.11 ± 0.88</td>
<td>47.18 ± 2.03</td>
</tr>
<tr>
<td>$F_{bkg} \times 10^2$</td>
<td>8.94 ± 8.26</td>
<td>62.56 ± 3.07</td>
</tr>
<tr>
<td>$F_{SS} \times 10^2$</td>
<td>91.79 ± 7.65</td>
<td>53.66 ± 2.68</td>
</tr>
</tbody>
</table>

- Kaon and pion fractions much lower in $IP_{>120}\mu m$ sample
- HF fraction increases from \sim50% \rightarrow \sim90%
- Even inclusive muon asymmetry significantly different from BG expectation for $IP_{>120}\mu m$
Dependence on Impact Parameter

<table>
<thead>
<tr>
<th>Quantity</th>
<th>$IP_{>120}$</th>
<th>$IP_{<120}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_K \times 10^2$</td>
<td>5.19 ± 0.37</td>
<td>17.64 ± 0.27</td>
</tr>
<tr>
<td>$f_\pi \times 10^2$</td>
<td>5.65 ± 0.40</td>
<td>34.72 ± 1.66</td>
</tr>
<tr>
<td>$f_p \times 10^2$</td>
<td>0.05 ± 0.03</td>
<td>0.45 ± 0.20</td>
</tr>
<tr>
<td>$F_K \times 10^2$</td>
<td>4.48 ± 4.05</td>
<td>21.49 ± 0.62</td>
</tr>
<tr>
<td>$F_\pi \times 10^2$</td>
<td>4.43 ± 3.95</td>
<td>40.47 ± 2.26</td>
</tr>
<tr>
<td>$F_p \times 10^2$</td>
<td>0.03 ± 0.05</td>
<td>0.59 ± 0.23</td>
</tr>
<tr>
<td>$f_S \times 10^2$</td>
<td>89.11 ± 0.88</td>
<td>47.18 ± 2.03</td>
</tr>
<tr>
<td>$F_{bkg} \times 10^2$</td>
<td>8.94 ± 8.26</td>
<td>62.56 ± 3.07</td>
</tr>
<tr>
<td>$F_{SS} \times 10^2$</td>
<td>91.79 ± 7.65</td>
<td>53.66 ± 2.68</td>
</tr>
</tbody>
</table>

- Kaon and pion fractions much lower in IP>120µm sample
- HF fraction increases from ~50% → ~90%
- Even inclusive muon asymmetry significantly different from BG expectation for IP>120µm

Measured asymmetry larger in B^0_d suppressed sample, but too early to make strong conclusions.
Conclusions

• Dimuon asymmetry offers a tantalizing possibility for BSM physics in B meson mixing:
 o Current measurement inconsistent with SM at the ~4σ level
 o D0 already planning next update with more use of IP information
 o Need independent confirmation from other experiments.

• Further studies ongoing in exclusive decay modes to extract flavor-specific asymmetries in B^0 and B^0_s systems.

• We thank the community for their interest and ideas.

[arXiv:1106.6308 [hep-ex] (accepted by PRD one week ago, 23rd August 2011)]