A new CP violating observable for the LHC

Joshua Berger
Cornell University

with Monika Blanke and Yuval Grossman

September 1, 2011
The LHC era has begun!

1. Identify new states
2. Measure masses and spins
3. Measure couplings, flavor structure, CP-violation
Goal: Find calculable & measurable \mathcal{CP} observables

- Requires interference & different strong phases
- So far: strong rescattering ($B \rightarrow K\pi$) and oscillation (meson mixing)
- Our result: new type of strong phase in 3-body decays with different orderings
Seeing CP-violation: Problem

- Looking for asymmetry:

\[A_{\text{CP}} = \frac{\Gamma(i \to f) - \Gamma(\bar{i} \to \bar{f})}{\Gamma(i \to f) + \Gamma(\bar{i} \to \bar{f})} \neq 0 \]

\[M = |a| e^{i\varphi} \]

\[\bar{M} = |a| e^{-i\varphi} \]

then

\[A_{\text{CP}} = 0 \]
Seeing CP-violation: Problem

• Looking for asymmetry:

\[
A_{\text{CP}} = \frac{\Gamma(i \rightarrow f) - \Gamma(i \rightarrow \bar{f})}{\Gamma(i \rightarrow f) + \Gamma(i \rightarrow \bar{f})} \neq 0
\]

\[
M = |a_1| e^{i\varphi_1} + |a_2| e^{i\varphi_2}
\]

\[
\overline{M} = |a_1| e^{-i\varphi_1} + |a_2| e^{-i\varphi_2}
\]

then

\[
A_{\text{CP}} = 0
\]
Looking for asymmetry:

\[\mathcal{A}_{\text{CP}} = \frac{\Gamma(i \to f) - \Gamma(i \to \bar{f})}{\Gamma(i \to f) + \Gamma(i \to \bar{f})} \neq 0 \]

\[\mathcal{M} = |a_1|e^{i\delta_1 + i\varphi_1} + |a_2|e^{i\delta_2 + i\varphi_2} \]

\[\overline{\mathcal{M}} = |a_1|e^{i\delta_1 - i\varphi_1} + |a_2|e^{i\delta_2 - i\varphi_2} \]

then

\[\mathcal{A}_{\text{CP}} \propto |a_1||a_2|\sin(\delta_1 - \delta_2)\sin(\varphi_1 - \varphi_2) \]
Seeing CP-violation: Solution

Requirements:

1. Two interfering amplitudes a_1, a_2
2. Different weak (CP-odd) phases φ_1, φ_2
3. Different strong (CP-even) phases δ_1, δ_2

\[A_{\text{CP}} \propto |a_1| |a_2| \sin(\varphi_1 - \varphi_2) \sin(\delta_1 - \delta_2) \]
Strong phase?

- In general, comes from time evolution: e^{iEt}
- Basic case: oscillation of intermediate states - requires states with same quantum #’s
- More complicated: strong interaction rescattering - hard to calculate

Another way to get a calculable strong phase?
The Breit-Wigner Formula

Process with narrow-width virtual state:

\[\mathcal{M} = \mathcal{M}_1 \frac{1}{q^2 - m^2 + i\Gamma m} \mathcal{M}_2 \]

- Breit-Wigner propagator contributes phase
- Momentum-space equivalent of \(e^{iEt} \)
Strong phase from the propagator

Strong phase from intermediate particle:

1. Different particles \leftrightarrow Time-integrated oscillation
2. Different virtuality \rightarrow New!

$$\delta = \arg \left(\frac{1}{q^2 - m^2 + im\Gamma} \right)$$
A new calculable strong phase

Requirements:

1. Three body decay
2. Two different orderings
3. On-shell resonance

Result:

CP-asymmetry in Dalitz plot
Toy model content

- All particles are scalars
- Heavy neutral particle: \(X_0 \)
- Charged resonance: \(Y^+ \)
- Lighter particles: \(X_{1,2}^+, X_3^0 \)
- Phase space \(\Rightarrow \) scale hierarchy:

\[
m_{X_0} > m_{Y^\pm} > m_{X_3^0} + m_{X_{1,2}^\pm}
\]
Feynman rules

\[X_0^0 \rightarrow X_i^- \rightarrow Y^+ \]
\[X_3^0 \rightarrow X_i^- \rightarrow Y^+ \]

\[= -iae^{i\varphi_a} \]
\[= -ibe^{i\varphi_b} \]

One weak phase: \(\varphi = \varphi_b - \varphi_a \)
Toy model decays

\[X_0^0 \rightarrow Y^- \rightarrow X_1^+ \]

\[= \frac{|a| |b| e^{i\varphi}}{q_{23}^2 - m_Y^2 + i m_Y \Gamma_Y} \]

Different weak phase, different strong phase
Asymmetry in the Dalitz plot

\[A_{CP}^{\text{diff}} \propto \sin 2\varphi (q_{13}^2 - q_{23}^2) \Gamma_Y m_Y \]
Integrated asymmetries

\[X_0^0 \rightarrow X_1^+ X_2^- X_3^0 \]

- Integrated rate suppressed:

\[\mathcal{A}_{CP}^{\text{int}} \propto \frac{\Delta m_{12}^2}{m_0^2} \]

- Eliminate suppression by phase space weighting:

\[\mathcal{A}_{CP}^{\text{wgt}} \equiv \frac{1}{\Gamma + \bar{\Gamma}} \int dq_{13}^2 dq_{23}^2 \ \text{sgn}(q_{23}^2 - q_{13}^2) \left(\frac{d\Gamma}{dq_{13}^2 dq_{23}^2} - \frac{d\bar{\Gamma}}{dq_{13}^2 dq_{23}^2} \right) \]
The relevant model

Electroweak sector of MSSM

- Heavy neutral particle: $\sim \tilde{B}$
- Intermediate charged resonance: H^{\pm}
- “Light” final states: lighter charginos and neutralinos
- Hierarchy of scales for maximal signal:

$$m_{\chi_4^0} \sim M_1 \gg m_{H^+} \gg m_{\chi_i^0}, m_{\chi_j^{\pm}} \sim \sqrt{\left|\mu M_2\right|} > m_Z$$
The Feynman diagrams

\[\chi_4^0 \rightarrow \chi_2^- \rightarrow \chi_3^0 \rightarrow H^+ \]
\[\chi_1^+ \rightarrow \chi_4^0 \rightarrow \chi_3^0 \rightarrow H^- \]

- One weak phase: \(\text{arg}(\mu b^* M_2) \)
Dalitz plot observables

\[\log d\Gamma \]

\[A_{\text{diff}}^{\text{CP}} \]
MSSM results

- Suppressed integrated asymmetry:

\[A^\text{int}_{\text{CP}} = -3.5 \times 10^{-5} \]

- Using phase space weighting:

\[A^\text{wgt}_{\text{CP}} = -6.5 \times 10^{-4} \]

Electroweak MSSM is challenging
The ingredients

Recipe for Dalitz plot asymmetry:

- Three body decay
- Two different orderings
- On-shell resonance