Linearized supergravity and superconformal formulation

Yutaka Sakamura (KEK)

[arXiv:1107.4247]
Introduction

Extra dimensions have moduli (size, shape), which need to be stabilized.
Introduction

Extra dimensions have moduli \text{(size, shape)}, which need to be stabilized.

In SUSY models, moduli multiplets play an important role in the mediation of SUSY breaking to visible sector.
Introduction

Extra dimensions have moduli (size, shape), which need to be stabilized.

In SUSY models, moduli multiplets play an important role in the mediation of SUSY breaking to visible sector.

Moduli originate from the gravitational multiplet in higher-dimensional SUGRA.
Introduction

Extra dimensions have moduli (size, shape), which need to be stabilized.

In SUSY models, moduli multiplets play an important role in the mediation of SUSY breaking to visible sector.

Moduli originate from the gravitational multiplet in higher-dimensional SUGRA.

We have to work in the context of SUGRA
Introduction

Extra dimensions have moduli (size, shape), which need to be stabilized.

In SUSY models, moduli multiplets play an important role in the mediation of SUSY breaking to visible sector.

Moduli originate from the gravitational multiplet in higher-dimensional SUGRA.

We have to work in the context of SUGRA

It is convenient to express higher-dimensional SUGRA in terms of N=1 superfields by using formulae of 4D off-shell SUGRA.
Superconformal formulation

[Kaku, Townsend, Nieuwenhuizen, PRD17 (1978) 3179;
Ferrara, Grisaru, Nieuwenhuizen, NPB138 (1978) 430,
Kugo, Uehara NPB226 (1983) 49, …]

• Systematic method to construct SUGRA action
Superconformal formulation

• Systematic method to construct SUGRA action
• Most of the known off-shell actions are realized by this formulation.
Superconformal formulation

[Kaku, Townsend, Nieuwenhuizen, PRD17 (1978) 3179;
Ferrara, Grisaru, Nieuwenhuizen, NPB138 (1978) 430,
Kugo, Uehara NPB226 (1983) 49, ...]

• Systematic method to construct SUGRA action
• Most of the known off-shell actions are realized by this formulation.
• We can treat general SUGRA.
Superconformal formulation

• Systematic method to construct SUGRA action
• Most of the known off-shell actions are realized by this formulation.
• We can treat general SUGRA.
• Extension to 5D has been done.

Superconformal formulation

- Systematic method to construct SUGRA action
- Most of the known off-shell actions are realized by this formulation.
- We can treat general SUGRA.
- Extension to 5D has been done.
- An explicit expression of the action is lengthy and complicated.
Linearized SUGRA

[Sugraa, Zumino, NPB134 (1978) 301; Siegel, Gates Jr., NPB147 (1979) 77, ...]

SUGRA action is constructed up to linear order in SUGRA fields.

(SUGRA fields: vierbein e_μ^ν, gravitino $\psi_\mu\alpha$, ...)

28 August 2011

SUSY11@Fermilab
Linearized SUGRA

[SUGRA action is constructed up to linear order in SUGRA fields. (SUGRA fields: vierbein e_μ^ν, gravitino $\psi_{\mu\alpha}$, ...)]

Advantage

It is described in terms of superfields on the ordinary superspace (x^μ, θ_α).
Linearized SUGRA

[SUGRA action is constructed up to linear order in SUGRA fields.](SUGRA fields: vierbein e_μ^ν, gravitino $\psi_{\mu\alpha}$, ...)

Advantage

It is described in terms of superfields on the ordinary superspace (x^μ, θ_α).

5D linearized SUGRA is constructed in terms of N=1 superfields for the minimal field contents.

Linearized SUGRA

For example, in the brane-world scenario,

we can calculate brane-to-brane contributions,
keeping N=1 superfield structure.

Superconformal formulation

- We can treat general SUGRA in full order.
- 5D extension has been done.
- Explicit expressions are complicated.

Linearized SUGRA

- It is described by superfields.
- We cannot discuss beyond linearized order in SUGRA fields.
- 5D extension is done only for the minimal case.
Superconformal formulation

- We can treat general SUGRA in full order.
- 5D extension has been done.
- Explicit expressions are complicated.

Linearized SUGRA

- It is described by superfields.
- We cannot discuss beyond linearized order in SUGRA fields.
- 5D extension is done only for the minimal case.

It is useful to use both formulations in a complementary manner.
Superconformal formulation

• We can treat general SUGRA in full order.
• 5D extension has been done.
• Explicit expressions are complicated.

Linearized SUGRA

• It is described by superfields.
• We cannot discuss beyond linearized order in SUGRA fields.
• 5D extension is done only for the minimal case.

It is useful to use both formulations in a complementary manner.
It is useful to use both formulations in a complementary manner.

Superconformal formulation
- We can treat general SUGRA in full order.
- 5D extension has been done.
- Explicit expressions are complicated.

Linearized SUGRA
- It is described by superfields.
- We cannot discuss beyond linearized order in SUGRA fields.
- 5D extension is done only for the minimal case.

Purpose
Clarify the direct relation between the two formulations.
Strategy

We modify the known linearized SUGRA, and

Fields in the modified linearized SUGRA

Identify

Fields in the superconformal formulation of

[Kugo & Uehara, NBP226 (1983) 49]
Modified linearized SUGRA
Superconformal multiplets

Each superconformal multiplet is characterized by the Weyl weight w and the chiral weight n. (dilatation) (R-charge)

We consider the following three types of multiplets.

• Weyl multiplet (SUGRA multiplet)
• (Anti-)Chiral multiplet (matter, compensator)
• Real general multiplet (gauge multiplet, ...)

Superconformal transformations

For a chiral superfield \((w = n)\),
\[
\delta \Phi = \left\{ -\frac{1}{4} \bar{D}^2 L^\alpha D_\alpha - i \sigma^\mu_{\alpha \dot{\alpha}} \bar{D}^\dot{\alpha} L^\alpha \partial_\mu + 2w \Lambda \right\} \Phi.
\]

For an anti-chiral superfield \((w = -n)\),
\[
\delta \bar{\Phi} = \left\{ -\frac{1}{4} D^2 \bar{L}_\dot{\alpha} \bar{D}^\dot{\alpha} - i \sigma^\mu_{\dot{\alpha} \alpha} D^\alpha \bar{L}^\dot{\alpha} \partial_\mu + 2w \bar{\Lambda} \right\} \bar{\Phi}.
\]

For a real general superfield \((n = 0)\),
\[
\delta V = \left\{ -\frac{1}{4} \bar{D}^2 L^\alpha D_\alpha - \frac{i}{2} \sigma^\mu_{\alpha \dot{\alpha}} \bar{D}^\dot{\alpha} L^\alpha \partial_\mu + w \Lambda + \text{hc} \right\} V,
\]
where
\[
\Lambda = -\frac{1}{24} \left(\bar{D}^2 D^\alpha L_\alpha + 4 \Xi \right).
\]
Superconformal transformations

For a chiral superfield \((w = n)\),
\[
\delta \Phi = \left\{ -\frac{1}{4} \bar{D}^2 L^\alpha D_\alpha - i \sigma^\mu_{\alpha \dot{\alpha}} \bar{D}^{\dot{\alpha}} L^\alpha \partial_\mu + 2w \Lambda \right\} \Phi.
\]

For an anti-chiral superfield \((w = -n)\),
\[
\delta \bar{\Phi} = \left\{ -\frac{1}{4} D^2 \bar{L}_{\dot{\alpha}} \bar{D}^{\dot{\alpha}} - i \sigma^\mu_{\alpha \dot{\alpha}} D^\alpha \bar{L}^{\dot{\alpha}} \partial_\mu + 2w \bar{\Lambda} \right\} \bar{\Phi}.
\]

For a real general superfield \((n = 0)\),
\[
\delta V = \left\{ -\frac{1}{4} \bar{D}^2 L^\alpha D_\alpha - i \frac{1}{2} \sigma^\mu_{\alpha \dot{\alpha}} \bar{D}^{\dot{\alpha}} L^\alpha \partial_\mu + w \Lambda + hc \right\} V,
\]
where
\[
\Lambda = -\frac{1}{24} \left(\bar{D}^2 D^\alpha L_\alpha + 4 \Xi \right).
\]

We also introduce \(U^\mu\), which transforms inhomogeneously,
\[
\delta U^\mu = \frac{1}{2} \sigma^\mu_{\alpha \dot{\alpha}} \left(\bar{D}^{\dot{\alpha}} L^\alpha - D^\alpha \bar{L}^{\dot{\alpha}} \right).
\]
Transformation parameters

Only the following components of L^α appear in the component transformation laws.

\[
\begin{align*}
\xi &= \text{Im} \left(\sigma^\mu_{\alpha\alpha} \bar{D}^{\alpha} L^\alpha \right) , \\
\epsilon^\alpha &= -\frac{1}{4} \bar{D}^2 L^\alpha , \\
\varphi &= -\frac{1}{4} \text{Re} \left(D_\alpha \bar{D}^2 L^\alpha \right) , \\
\vartheta &= \frac{1}{6} \text{Im} \left(D_\alpha \bar{D}^2 L^\alpha \right) , \\
\lambda_{\mu\nu} &= -\frac{1}{2} \text{Re} \left\{ (\sigma_{\mu\nu})_{\beta\alpha} D_\beta \bar{D}^2 L^\alpha \right\} , \\
\rho^\alpha &= -\frac{1}{32} \bar{D}^2 \bar{D}^2 L^\alpha .
\end{align*}
\]
Transformation parameters

Only the following components of L^α appear in the component transformation laws.

\[
\begin{align*}
\xi &= \text{Im} \left(\sigma^\mu_{\alpha\dot{\alpha}} \bar{D}^{\dot{\alpha}} L^\alpha \right), \\
\epsilon^\alpha &= -\frac{1}{4} \bar{D}^2 L^\alpha, \\
\varphi &= -\frac{1}{4} \text{Re} \left(D_\alpha \bar{D}^2 L^\alpha \right), \\
\vartheta &= \frac{1}{6} \text{Im} \left(D_\alpha \bar{D}^2 L^\alpha \right), \\
\lambda_{\mu\nu} &= -\frac{1}{2} \text{Re} \left\{ (\sigma_{\mu\nu})^\beta_{\alpha} D^\beta \bar{D}^2 L^\alpha \right\}, \\
\rho^\alpha &= -\frac{1}{32} \bar{D}^2 \bar{D}^2 L^\alpha.
\end{align*}
\]

(P : translation)
(Q : SUSY)
(D : dilatation)
($U(1)_A$: R-symmetry)
(M : local Lorentz)
(S : conformal SUSY)
Field identification
Weyl multiplet (SUGRA multiplet)

\[U_\mu = (\theta \sigma^\nu \bar{\theta}) \tilde{e}_{\nu \mu} + \bar{\theta}^2 (\theta \bar{\psi}_\mu) + \theta^2 (\bar{\theta} \bar{\psi}_\mu) + \theta^2 \bar{\theta}^2 d_\mu \]
Weyl multiplet (SUGRA multiplet)

\[U_\mu = \left(\theta \sigma^\nu \bar{\theta} \right) \tilde{e}_{\nu \mu} + \bar{\theta}^2 (\theta \bar{\psi}_\mu) + \theta^2 (\bar{\theta} \bar{\psi}_\mu) + \theta^2 \bar{\theta}^2 d_\mu \]

\[
\begin{align*}
\delta \tilde{e}_\nu^\mu &= -\delta_\nu^\mu \varphi + \lambda^\mu_\nu + \partial_\nu \xi^\mu, \\
\delta \bar{\psi}_\alpha^\mu &= \left(2 \sigma_\mu \bar{\rho} + i \sigma^\nu \bar{\sigma}^\mu \partial_\nu \epsilon \right)_\alpha, \\
\delta d^\mu &= \frac{3}{4} \partial^\mu \vartheta + \frac{1}{4} \epsilon^{\mu \nu \rho \tau} \partial_\nu \lambda_{\rho \tau}.
\end{align*}
\]
Weyl multiplet (SUGRA multiplet)

\[U_\mu = (\theta \sigma^\nu \bar{\theta}) \tilde{e}_{\nu \mu} + \bar{\theta}^2 (\theta \bar{\psi}_\mu) + \theta^2 (\bar{\theta} \bar{\psi}_\mu) + \theta^2 \bar{\theta}^2 d_\mu \]

\[
\begin{align*}
\delta \tilde{e}_\nu^\mu &= -\delta_\nu^\mu \varphi + \lambda_\nu^\mu + \partial_\nu \xi^\mu, \\
\delta \bar{\psi}_\alpha^\mu &= \left(2 \sigma_\mu \bar{\rho} + i \sigma^\nu \bar{\sigma}_\mu \partial_\nu \epsilon \right)_\alpha, \\
\delta d_\mu &= \frac{3}{4} \partial_\mu \vartheta + \frac{1}{4} \epsilon^{\mu\nu\rho\tau} \partial_\nu \lambda_{\rho\tau}.
\end{align*}
\]

Each component is identified as

\[
\begin{align*}
\tilde{e}_\nu^\mu &= e_\nu^\mu - \delta_\nu^\mu, \\
\bar{\psi}_\alpha^\mu &= i (\sigma^\nu \bar{\sigma}_\mu \psi_\nu)_\alpha, \\
d^\mu &= \frac{3}{4} A^\mu - \frac{1}{4} \epsilon^{\mu\nu\rho\tau} \partial_\nu \bar{\epsilon}_{\rho\tau}.
\end{align*}
\]

\[
\begin{align*}
\left(\begin{array}{l}
\begin{array}{l}
e_\nu^\mu : \text{vierbein; } \\
\psi_{\mu\alpha} : \text{gravitino; }
\end{array}
\end{array}
\right)
\left(\begin{array}{l}
A_\mu : U(1)_A \text{ gauge field}
\end{array}
\right)
\end{align*}
\]
Chiral multiplet

\[\Phi = \phi + \theta \chi + \theta^2 F \]

\[\delta \Phi = \left\{ \frac{-1}{4} \bar{D}^2 L^\alpha D_\alpha - i \sigma_\alpha^{\mu \alpha \dot{\alpha}} \bar{D}^\dot{\alpha} L^\alpha \partial_\mu - \frac{w}{12} (\bar{D}^2 D^\alpha L_\alpha + 4 \Xi) \right\} \Phi \]
Chiral multiplet

\[
\Phi = \phi + \theta \chi + \theta^2 F
\]

\[
\delta \Phi = \left\{ -\frac{1}{4} \bar{D}^2 \bar{D}^\alpha D_\alpha - i \sigma^\mu_{\alpha \dot{\alpha}} \bar{D}^{\dot{\alpha}} L^\alpha \partial_\mu - \frac{w}{12} \left(\bar{D}^2 D^\alpha L_\alpha + 4 \Xi \right) \right\} \Phi
\]

In components,

\[
\begin{align*}
\delta \phi &= \xi^\mu \partial_\mu \phi + \epsilon \chi + w \varphi \phi + \frac{i w}{2} \partial \phi, \\
\delta \chi_\alpha &= \xi^\mu \partial_\mu \chi_\alpha + \frac{1}{2} \lambda_{\mu \nu} \left(\sigma^{\mu \nu} \chi \right)_\alpha + 2 \epsilon_\alpha F - 2 i \left(\sigma^{\mu \dot{\epsilon}} \right)_\alpha \partial \mu \phi \\
&\quad + \left(w + \frac{1}{2} \right) \varphi \chi_\alpha + \frac{i}{2} \left(w - \frac{3}{2} \right) \partial \chi_\alpha - 4 w \rho_\alpha \phi, \\
\delta F &= \xi^\mu \partial_\mu F - i \bar{\epsilon} \sigma^{\mu \mu} \partial_\mu \chi + \left(w + 1 \right) \varphi F + \frac{i}{2} \left(w - 3 \right) \partial F \\
&\quad + 2 \left(w - 1 \right) \rho \chi.
\end{align*}
\]
Chiral multiplet

\[\Phi = \phi + \theta \chi + \theta^2 F \]

\[\delta \Phi = \left\{ -\frac{1}{4} \bar{D}^2 L^\alpha D_\alpha - i \sigma^\mu_{\alpha \dot{\alpha}} \bar{D}^\dot{\alpha} L^\alpha \partial_\mu - \frac{w}{12} \left(\bar{D}^2 D^\alpha L_\alpha + 4\Xi \right) \right\} \Phi \]

In components,

\[\begin{align*}
\delta \phi &= \xi^\mu \partial_\mu \phi + \epsilon \chi + w \varphi \phi + \frac{i w}{2} \vartheta \phi, \\
\delta \chi_\alpha &= \xi^\mu \partial_\mu \chi_\alpha + \frac{1}{2} \lambda_{\mu \nu} \left(\sigma^{\mu \nu} \chi \right)_\alpha + 2 \epsilon \chi_\alpha F - 2 i \left(\sigma^{\mu \nu} \bar{\epsilon} \right)_\alpha \partial_\mu \phi \\
&\quad + \left(w + \frac{1}{2} \right) \varphi \chi_\alpha + \frac{i}{2} \left(w - \frac{3}{2} \right) \vartheta \chi_\alpha - 4 w \rho \chi_\alpha, \\
\delta F &= \xi^\mu \partial_\mu F - i \bar{\epsilon} \sigma^{\mu \nu} \partial_\nu \chi + \left(w + 1 \right) \varphi F + \frac{i}{2} \left(w - 3 \right) \vartheta F \\
&\quad + 2(w - 1) \rho \chi.
\end{align*} \]

We can identify \([\phi, \chi_\alpha, F] \) with a chiral multiplet.
Embedding into a general multiplet

In the global SUSY case, a chiral superfield is embedded into a general superfield by

\[y^{\mu} \equiv x^{\mu} - i \theta \sigma^{\mu \bar{\sigma}} \bar{\theta} \rightarrow x^{\mu}. \]
Embedding into a general multiplet

In the global SUSY case, a chiral superfield is embedded into a general superfield by $y^\mu \equiv x^\mu - i\theta\sigma^\mu\bar{\theta} \rightarrow x^\mu$.

In SUGRA, this is not enough.

$\mathcal{V}(\Phi) = (1 + iU^\mu\partial_\mu)\Phi$
Embedding into a general multiplet

In the global SUSY case, a chiral superfield is embedded into a general superfield by \(y^\mu \equiv x^\mu - i\theta \sigma^\mu \bar{\theta} \rightarrow x^\mu \).

In SUGRA, this is not enough.

\[
\mathcal{V}(\Phi) = (1 + iU^\mu \partial_\mu)\Phi
\]

\[
= \phi + \theta \chi + \theta^2 F - i(\theta \sigma^\mu \bar{\theta}) \left(e^{-1} \right)^\nu_\mu \partial_\nu \phi
\]

\[
- \frac{i}{2} \theta^2 \left\{ \bar{\theta} \sigma^\mu \left(e^{-1} \right)^\nu_\mu \partial_\nu \chi - 2 (\bar{\theta} \bar{\psi}_\mu) \partial_\mu \phi \right\} + i\bar{\theta}^2 (\theta \bar{\psi}^\mu) \partial_\mu \phi
\]

\[
- \frac{1}{4} \theta^2 \bar{\theta}^2 \left\{ g^{\mu \nu} \partial_\mu \partial_\nu \phi + 2i\bar{\psi}_\mu \partial_\mu \chi - 4i d^\mu \partial_\mu \phi \right\} ,
\]

where \((e^{-1})^\nu_\mu \equiv \delta^\nu_\mu - \bar{e}_\mu^\nu \) and \(g^{\mu \nu} \equiv \eta^{\mu \nu} - \bar{e}^{\mu \nu} - \bar{e}^\nu_\mu \).
Real general multiplet

\[V = C' + i\theta \zeta' - i\bar{\theta}\bar{\zeta'} - \theta^2 H' - \bar{\theta}^2 \bar{H}' - (\theta \sigma^{\mu} \bar{\theta}) B'_\mu + i\theta^2 (\bar{\theta} \chi') - i\bar{\theta}^2 (\theta \chi') + \frac{1}{2} \theta^2 \bar{\theta}^2 D', \]

\[\delta V = \left\{-\frac{1}{4} \bar{D}^2 L^\alpha D_\alpha - \frac{i}{2} \sigma^\mu_{\alpha\dot{\alpha}} \bar{D}^{\dot{\alpha}} L^\alpha \partial_\mu + w\Lambda + h.c\right\} V. \]

The transformations of \([C', \zeta', H', B'_\mu, \chi'_\alpha, D']\)
do not agree with the superconformal trf. of a real general multiplet as is.
Real general multiplet

\[V = C' + i \theta \zeta' - i \bar{\theta} \bar{\zeta}' - \theta^2 \mathcal{H}' - \bar{\theta}^2 \bar{\mathcal{H}'} - (\theta \sigma^\mu \bar{\theta}) B'_\mu \]
\[+ i \theta^2 (\bar{\theta} \lambda') - i \bar{\theta}^2 (\theta \lambda') + \frac{1}{2} \theta^2 \bar{\theta}^2 D', \]

We need to redefine the fields.

\[
C \equiv C, \quad \zeta_\alpha \equiv \zeta'_\alpha, \quad \mathcal{H} \equiv \mathcal{H}', \\
B_\mu \equiv B'_\mu + \zeta'_\mu \psi_\mu + \bar{\zeta}'_\mu \bar{\psi}_\mu + \frac{w}{2} C' A_\mu, \\
\lambda_\alpha \equiv \lambda'_\alpha + \frac{i}{2} \left\{ \sigma^\mu \left(e^{-1} \right)_\mu^\nu \partial_\nu \bar{\zeta}' \right\} \alpha + (\sigma^\mu \bar{\sigma}^\nu \psi_\mu)_\alpha B'_\nu + \frac{w}{4} (\sigma^\mu \bar{\sigma}' \lambda')_\alpha A_\mu, \\
D \equiv D' + \frac{1}{2} g^{\mu \nu} \partial_\mu \partial_\nu C' - \left(2 d_\mu - \frac{w}{2} A^\mu \right) B'_\mu \\
\quad + \left(\bar{\lambda}' \sigma^\mu \psi_\mu - \frac{i}{2} \partial_\nu \zeta' \sigma^\mu \bar{\sigma}^\nu \psi_\mu - i \partial_\mu \zeta' \psi_\mu + \frac{2iw}{3} \zeta' \sigma_\mu \nu \partial_\nu \psi_\mu + \text{h.c.} \right). \]
Real general multiplet

\[V = C' + i\theta \zeta' - i\bar{\theta}\bar{\zeta}' - \theta^2 \mathcal{H}' - \bar{\theta}^2 \bar{\mathcal{H}}' - (\theta \sigma^\mu \bar{\sigma}) B'_\mu + i\theta^2 (\bar{\theta} \bar{\chi}') - i\bar{\theta}^2 (\theta \chi') + \frac{1}{2} \theta^2 \bar{\theta}^2 D', \]

We need to redefine the fields.

\[
\begin{align*}
C & \equiv C, \quad \zeta_\alpha \equiv \zeta'_\alpha, \quad \mathcal{H} \equiv \mathcal{H}', \\
B_\mu & \equiv B'_\mu + \zeta' \psi_\mu + \zeta'' \bar{\psi}_\mu + \frac{w}{2} C' A_\mu, \\
\lambda_\alpha & \equiv \lambda'_\alpha + \frac{i}{2} \left\{ \sigma^\mu \left(e^{-1} \right)^\nu_\mu \partial_\nu \bar{\zeta}' \right\}_\alpha + (\sigma^\mu \bar{\sigma}^\nu \psi_\mu)_\alpha B'_\nu + \frac{w}{4} (\sigma^\mu \bar{\zeta}')_\alpha A_\nu, \\
D & \equiv D' + \frac{1}{2} g^{\mu\nu} \partial_\mu \partial_\nu C' - \left(2 d^\mu - \frac{w}{2} A^\mu \right) B'_\mu \\
& \quad + \left(\bar{\zeta}' \sigma^\mu \psi_\mu - \frac{i}{2} \partial_\nu \zeta' \sigma^\mu \bar{\sigma}^\nu \psi_\mu - i \partial_\mu \zeta' \psi_\mu + \frac{2iw}{3} \zeta' \sigma^\mu \partial_\nu \psi_\mu + \text{h.c.} \right).
\end{align*}
\]

Then, \([C, \zeta_\alpha, \mathcal{H}, B_\mu, \lambda_\alpha, D]\) is identified with a real general multiplet.
Gauge multiplet (a real general multiplet with $w = 0$)

Gauge transformation

$$V \rightarrow V + V(\Sigma) + V(\bar{\Sigma}), \quad (\Sigma : \text{chiral multiplet})$$

We can move to the Wess-Zumino gauge.

$$V_{\text{WZ}} = -(\theta \sigma^\mu \bar{\theta})(e^{-1})^\nu_\mu \hat{B}'_\nu + i\theta^2 \bar{\theta} (\bar{\lambda} - i\bar{\psi}^\mu \hat{B}'_\mu) - i\bar{\theta}^2 \theta (\lambda + i\psi^\mu \hat{B}'_\mu)$$

$$+ \frac{1}{2} \theta^2 \bar{\theta}^2 \left\{ D + \left(-\frac{i}{2} \bar{\lambda} \sigma^\mu \bar{\psi}_\mu + \text{h.c.} \right) + 2d^\mu \hat{B}'_\mu \right\}.$$}

This is possible only when $w = 0$.
Gauge multiplet (a real general multiplet with \(w = 0 \))

Gauge transformation

\[V \to V + \mathcal{V}(\Sigma) + \mathcal{V}(\bar{\Sigma}), \quad (\Sigma : \text{chiral multiplet}) \]

We can move to the Wess-Zumino gauge.

\[
V_{\text{WZ}} = - (\theta \sigma^\mu \bar{\theta}) (e^{-1})^\nu_\mu \hat{B}'_\nu + i \theta^2 \bar{\theta} (\bar{\lambda} - i \bar{\psi}^\mu \hat{B}'_\mu) - i \bar{\theta}^2 \theta (\lambda + i \psi^\mu \hat{B}'_\mu)
\]

\[
+ \frac{1}{2} \theta^2 \bar{\theta}^2 \left\{ D + \left(- \frac{i}{2} \bar{\lambda} \sigma^\mu \psi_\mu + \text{h.c.} \right) + 2 d^\mu \hat{B}'_\mu \right\}.
\]

This is possible only when \(w = 0 \).

Field strength superfield

\[
\mathcal{W}_\alpha^{\text{naive}} = - \frac{1}{4} \bar{D}^2 D_\alpha V
\]
Gauge multiplet (a real general multiplet with $w = 0$)

Gauge transformation

$$V \rightarrow V + \mathcal{V}(\Sigma) + \mathcal{V}(\bar{\Sigma}), \quad (\Sigma : \text{chiral multiplet})$$

We can move to the Wess-Zumino gauge.

$$V_{\text{WZ}} = - (\theta \sigma^\mu \bar{\theta}) \left(e^{-1} \right)_\mu^\nu \partial_\nu \bar{B}_\mu + i \theta^2 \bar{\theta} \left(\lambda - i \psi^\mu \bar{B}_\mu \right) - i \bar{\theta}^2 \theta \left(\lambda + i \bar{\psi}^\mu \bar{B}_\mu \right)$$

$$+ \frac{1}{2} \theta^2 \bar{\theta}^2 \left\{ D + \left(- \frac{i}{2} \lambda \bar{\sigma}^\mu \bar{\psi}_\mu + \text{h.c.} \right) + 2 d^\mu \bar{B}_\mu \right\}.$$

This is possible only when $w = 0$.

Field strength superfield

$$\mathcal{W}_\alpha^{\text{naive}} \equiv - \frac{1}{4} \bar{D}^2 D_\alpha V$$

This is not gauge-invariant!
Gauge multiplet (a real general multiplet with $\mathcal{w} = 0$)

Gauge transformation

\[V \rightarrow V + \mathcal{V}(\Sigma) + \mathcal{V}(\bar{\Sigma}), \quad (\Sigma : \text{chiral multiplet}) \]

\[
\mathcal{W}_\alpha = -\frac{1}{4} Z_{\alpha}^{\beta} \bar{D}^2 \left\{ D_\beta V + \frac{1}{4} D_\beta U^\mu \bar{\sigma}_\mu ^{\gamma \gamma} [D_\gamma, \bar{D}_\gamma] V - i U^\mu \partial_\mu D_\beta V \right\},
\]

\[
Z_{\alpha}^{\beta} \equiv \delta_{\alpha}^{\beta} - \frac{1}{2} \bar{\epsilon}_\mu ^{\nu} \left(\sigma^{\mu \nu} \bar{\sigma}_\nu \right)_{\alpha}^{\beta} - \left(\sigma^{\mu \bar{\psi}_\mu} \right)_{\alpha} \bar{\theta}^{\beta}. \quad \text{Gauge-invariant!}
\]
Gauge multiplet (a real general multiplet with u = 0)

Gauge transformation

\[V \rightarrow V + \mathcal{V}(\Sigma) + \mathcal{V}(\bar{\Sigma}), \quad (\Sigma: \text{chiral multiplet}) \]

\[\mathcal{W}_\alpha = -\frac{1}{4} Z_{\alpha}^\beta \bar{D}^2 \left\{ D_\beta V + \frac{1}{4} D_\beta U^\mu \bar{\sigma}^{\gamma \gamma}_\mu [D_\gamma, \bar{D}_\gamma] V - i U^\mu \partial_\mu D_\beta V \right\}, \]

\[Z_{\alpha}^\beta \equiv \delta_{\alpha}^\beta - \frac{1}{2} \bar{\epsilon}_\mu ^\nu (\sigma^\mu \bar{\sigma}_\nu)^\beta _\alpha - (\sigma^\mu \bar{\psi}_\mu)^\beta _\alpha \theta^\beta . \quad \text{Gauge-invariant!} \]

In components,

\[\mathcal{W}_\alpha = -i \lambda_\alpha + \theta_\alpha D + i (\sigma^{\mu \nu} \theta)_\alpha (e^{-1})^\rho _\mu (e^{-1})^\tau _\nu \bar{F}_{\rho \tau} \]

\[-\theta^2 \left\{ \sigma^\mu (e^{-1})^\nu _\mu D_\nu \bar{\lambda} \right\} _\alpha, \]

where

\[\bar{F}_{\mu \nu} \equiv \partial_\mu \bar{B}_\nu - \partial_\nu \bar{B}_\mu + (i \psi_\mu \sigma_\nu \bar{\lambda} - i \psi_\nu \sigma_\mu \bar{\lambda} + \text{h.c.}), \]

\[(\mathcal{D}_\mu \bar{\lambda})^{\dot{\alpha}} \equiv \left\{ \left(\partial_\mu - \frac{1}{2} \omega^{\nu \rho}_\mu \sigma_{\nu \rho} + \frac{3i}{4} A_\mu \right) \bar{\lambda} \right\} ^{\dot{\alpha}} + (\bar{\sigma}^{\nu \rho} \bar{\psi}_\mu)^{\dot{\alpha}} \bar{F}_{\nu \rho} + i \bar{\psi}^{\dot{\alpha}} D. \]
Action formulae
F-term invariant action

\[S_F[W] = \int d^4x \int d^2\theta \ (1 + \tilde{\mathcal{E}}) W + \text{h.c.}. \]

where \(\tilde{\mathcal{E}} = \bar{\epsilon}_\mu^\mu - 2i\theta \sigma^\mu \bar{\psi}_\mu \), and \(\delta \tilde{\mathcal{E}} = \Xi \).

The factor \((1 + \tilde{\mathcal{E}}) \) corresponds to the chiral density multiplet.

This action is invariant only when \(w=3 \).
D term invariant action

\[S_D[K] \equiv 2 \int d^4x \int d^4\theta \left\{ 1 + \frac{1}{3} (\vec{E}_1 + \vec{\varepsilon} + \vec{\bar{\varepsilon}}) \right\} K, \]

where \(\vec{E}_1 \equiv \frac{1}{4} \vec{\sigma}_\mu \lbrack D_\alpha, \bar{D}_{\bar{\alpha}} \rbrack U^\mu. \)

This is invariant only when \(\nu = 2. \)
\[\bar{\mathcal{E}} = \bar{\epsilon}_\mu^\mu - 2i \theta \sigma^\mu \bar{\psi}_\mu \] is a redundant superfield.
\[\mathcal{E} = \tilde{e}_\mu^\mu - 2i \theta \sigma^\mu \tilde{\psi}_\mu \] is a redundant superfield.
\[\tilde{\cal E} = \tilde{e}_\mu^\mu - 2i\theta \sigma^\mu \tilde{\psi}_\mu \] is a redundant superfield.

We can absorb \(\tilde{\cal E} \) by redefinition,

\[
\begin{align*}
\hat{\Phi} & \equiv \left(1 + \frac{w}{3} \tilde{\cal E} \right) \Phi, \\
\hat{\cal V} & \equiv \left\{ 1 + \frac{w}{6} (\tilde{\cal E} + \bar{\cal E}) \right\} \cal V.
\end{align*}
\]
\[\tilde{\mathcal{E}} = \tilde{e}_\mu^\mu - 2i\theta \sigma_\mu \bar{\psi}_\mu \] is a redundant superfield.

We can absorb \(\tilde{\mathcal{E}} \) by redefinition,

\[
\begin{align*}
\tilde{\Phi} &\equiv \left(1 + \frac{w}{3} \tilde{\mathcal{E}}\right) \Phi, \\
\tilde{\mathcal{V}} &\equiv \left\{1 + \frac{w}{6} \left(\tilde{\mathcal{E}} + \bar{\mathcal{E}}\right)\right\} \mathcal{V}.
\end{align*}
\]

Then, the action formulae become

\[
\begin{align*}
S_F[W] &= \int d^4 x \int d^2 \theta \, \tilde{\mathcal{V}}, \\
S_D[K] &= 2 \int d^4 x \int d^4 \theta \left(1 + \tilde{E}_1\right) \tilde{K}.
\end{align*}
\]
\(\tilde{\mathcal{E}} = \tilde{e}_\mu - 2i \theta \sigma^\mu \tilde{\psi}_\mu \) is a redundant superfield.

We can absorb \(\tilde{\mathcal{E}} \) by redefinition,

\[
\begin{align*}
\tilde{\Phi} & \equiv \left(1 + \frac{w}{3} \tilde{\mathcal{E}}\right) \Phi, \\
\tilde{V} & \equiv \left\{1 + \frac{w}{6} (\tilde{\mathcal{E}} + \tilde{\mathcal{E}})\right\} V.
\end{align*}
\]

Then, the action formulae become

\[
\begin{align*}
S_F[W] &= \int d^4x \int d^2\theta \tilde{W}, \\
S_D[K] &= 2 \int d^4x \int d^4\theta \left(1 + \tilde{E}_1\right) \tilde{K}.
\end{align*}
\]

Now the dependence of the SUGRA fields are absorbed into the component fields, except for \(\tilde{E}_1 \).
Summary

- We modify the **linearized SUGRA** in a way that each component is identified with those in the superconformal formulation.
Summary

• We modify the linearized SUGRA in a way that each component is identified with those in the superconformal formulation.

• This identification makes it possible to use both formulations in a complementary way.
Summary

• We modify the *linearized SUGRA* in a way that each component is identified with those in the *superconformal formulation*.

• This identification makes it possible to use both formulations *in a complementary way*.

• This work provides a basis for an extension to higher-dimensional SUGRA.
Summary

• We modify the linearized SUGRA in a way that each component is identified with those in the superconformal formulation.

• This identification makes it possible to use both formulations in a complementary way.

• This work provides a basis for an extension to higher-dimensional SUGRA.

Future work

• Construct 5D linearized SUGRA for general field content.
Gauge kinetic term

As for the gauge kinetic term, \(\bar{\epsilon} \)-dependence automatically cancels because

\[
\mathcal{W}^\alpha \mathcal{W}_\alpha = (1 - \bar{\epsilon}) \hat{\mathcal{W}}^\alpha \hat{\mathcal{W}}_\alpha,
\]

where

\[
\hat{\mathcal{W}}_\alpha \equiv -\frac{1}{4} \bar{D}^2 \left(D_\alpha \hat{V} + \frac{1}{4} D_\alpha U^\mu \sigma_\mu^{\beta \beta} [D_\beta, \bar{D}_\beta] \hat{V} - i U^\mu \partial_\mu D_\alpha \hat{V} \right).
\]

Thus, the action is rewritten as

\[
S_{\text{kin}}^{\text{gauge}}[V] = S_F \left[-\frac{1}{4} \mathcal{W}^\alpha \mathcal{W}_\alpha \right]
\]

\[
= \int d^4x \int d^2\theta \left(1 + \bar{\epsilon} \right) \left(-\frac{1}{4} \mathcal{W}^\alpha \mathcal{W}_\alpha \right) + \text{h.c.}
\]

\[
= \int d^4x \int d^2\theta \left(-\frac{1}{4} \hat{\mathcal{W}}^\alpha \hat{\mathcal{W}}_\alpha \right) + \text{h.c.}
\]
SUGRA kinetic term

The SUGRA kinetic term is expressed as

\[
S_{SG}^{\text{kin}} = \int d^4x \int d^4\theta \Omega_0 \left\{ -\frac{1}{24} U_\mu D^\alpha \bar{D}^2 D_\alpha U^\mu + \frac{1}{9} \bar{E}_1^2 - \frac{1}{3} (\partial_\mu U^\mu)^2 \right\},
\]

where \(\bar{E}_1 \equiv \frac{1}{4} \bar{\sigma}_\mu^{\dot{\alpha}\alpha} [D_\alpha, \bar{D}_{\dot{\alpha}}] U^\mu \).