Indirect Search for Dark Matter with the Neutrino Telescope ANTARES

Andreas Spies, on behalf of the ANTARES Collaboration
SUSY11, Fermilab, Batavia 28.08.2011
Table of Contents

• Dark Matter
• Search for Dark Matter
• Supersymmetric WIMPs
• Regions of the mSUGRA parameter space
• The ANTARES Experiment
• Principle of Detection
• Background Rejection
• Expected Detection Rates
• Limit on the Neutrino Flux
• Summary and future Prospects
Dark Matter

Experimental Hints

WMAP: $0.09 < \Omega_{DM} h^2 < 0.13$

Andreas Spies, on behalf of the ANTARES Collaboration, SUSY11, Fermilab Batavia 28.08.2011
Dark Matter

Experimental Hints

Hot gas, baryonic matter

Dark Matter

DISTRIBUTION OF DARK MATTER IN NGC 3198
Search for Dark Matter

- Theories beyond the Standard Model (e.g. Kaluza-Klein, Supersymmetry) provide candidates for cold Dark Matter

- WIMPs: Weakly Interacting Massive Particles
 masses in the order of $O(100 \text{ GeV}) – O(1 \text{ TeV})$

- In SUSY models one of these WIMPs is the Neutralino X

- Indirect detection of Neutralinos with Neutrino Telescopes
Search for Dark Matter with Neutrino Telescopes

Principle of Detection:

- WIMPs from the galactic halo lose energy through scattering and accumulate in massive bodies, e.g. the Sun
- Self annihilation products (Neutrinos) can be detected with Neutrino Telescopes

Andreas Spies, on behalf of the ANTARES Collaboration, SUSY11, Fermilab Batavia 28.08.2011
Supersymmetric WIMPs

Minimal Supersymmetric Standard Model (MSSM):

- Disadvantage: additional 105 free parameters
- Simplifying assumptions are necessary to reduce number of parameters
- mSUGRA (minimal SUperGRAvity): defined on scale of gauge coupling unification
 → only 5 free parameters left

\[m_0, m_{1/2}, A_0, \tan(\beta), \text{sign}(\mu) \]
Regions of mSUGRA parameter space
(expected $\nu_\mu - \nu_\mu$ flux from the Sun)

- **Focus Point Region**
- **A-Annihilation Region**
- **Co-Annihilation Region**
- **Bulk Region**

- $0.09 < \Omega h^2 < 0.13$
- $\Omega h^2 < 0.09$
- $0.13 < \Omega h^2 < 1$

Andreas Spies, on behalf of the ANTARES Collaboration, SUSY11, Fermilab Batavia 28.08.2011
The ANTARES Experiment

Collaboration:
8 Countries, 29 institutes
The ANTARES Experiment

Detector layout:

Fully operational since May 2008
The ANTARES Experiment

Detector layout:

Fully operational since May 2008
The ANTARES Experiment

Detector layout:

Fully operational since May 2008
Principle of Detection
Principle of Detection

Graph

- **Anglular resolution (degrees)**
 - $\mu_{\text{rec}} - \mu_{\text{true}}$
 - $\mu_{\text{rec}} - \nu$

Logarithmic Scale

- $\log_{10}[E_{\nu} \text{ (GeV)}]$
Background Rejection

![Diagram of Earth and cosmic particles]

Elevation

- data
- MC atm. μ
- MC atm. ν
- MC total

Number of events

\[
\text{Number of events} = \begin{cases}
10^6 & \text{if } \sin \theta < 0.2 \\
10^5 & \text{if } 0.2 \leq \sin \theta < 0.6 \\
10^4 & \text{if } 0.6 \leq \sin \theta < 0.9 \\
10^3 & \text{if } 0.9 \leq \sin \theta < 1 \\
10^2 & \text{if } \sin \theta = 1 \\
10 & \text{if } \sin \theta = 0.8 \\
1 & \text{if } \sin \theta = 0.6 \\
0.1 & \text{if } \sin \theta = 0.2 \\
0.01 & \text{if } \sin \theta = 0 \\
0.001 & \text{if } \sin \theta = -0.2 \\
0.0001 & \text{if } \sin \theta = -0.4 \\
0.00001 & \text{if } \sin \theta = -0.6 \\
0.000001 & \text{if } \sin \theta = -0.8 \\
0.0000001 & \text{if } \sin \theta = -1 \\
\end{cases}
\]
ANTARES Effective Area

ANTARES Neutrino Effective Area in the low-energy regime

\[A_{\text{eff}} \quad [m^2] \]

\[E_{\nu} \quad [GeV] \]

- **Trigger3D, 60 kHz, 0% XOFFs**
 - Trigger level
 - Detection level

Andreas Spies, on behalf of the ANTARES Collaboration, SUSY11, Fermilab Batavia 28.08.2011
ANTARES Effective Area

ANTARES Neutrino Effective Area in the low-energy regime

\(A_{\text{eff}} \) [m²]

\(E_\nu [\text{GeV}] \)

Trigger3D, 60 kHz, 0% XOFFs

- Trigger level
- Detection level
Expected Detection Rate from the Sun (Simulation)

- WMAP favoured, 90% CL. excludable by ANTARES
- WMAP disfavoured, 90% CL. excludable by ANTARES
- WMAP favoured, not excludable by ANTARES
- WMAP disfavoured, not excludable by ANTARES

- Search Cone: 3°
- 10% misreconstructed Events (assumed)
- Unified Approach of Feldman-Cousins
Limit on Neutrino Flux from the Sun (Data)
Summary and Future Prospects

- ANTARES operational and taking data
- First Limit derived from 5 Line period
- Complementary method of SUSY/Dark Matter search to direct detection and LHC
- Analysis of 10 and 12 Line data using dedicated Low Energy reconstruction algorithm in progress
- Search for annihilation signal from centre of Earth in progress
BackUp slides
Muon Flux limit

Andreas Spies, on behalf of the ANTARES Collaboration, SUSY11, Fermilab Batavia 28.08.2011
Excludable regions of mSUGRA parameter space

Excludable in 3 years (90% C.L.): all some none