The WIMP Miracle

Contains factors of M_{Pl}, s_0, \ldots

\[\Omega_{\text{DM}} h^2 \approx 0.1 \left(\frac{X_f}{20} \right) \left(\frac{g_*}{80} \right)^{-\frac{1}{2}} \left(\frac{\langle \sigma v \rangle_0}{3 \times 10^{-26} \text{ cm}^3 / \text{s}} \right) \]

Within orders of magnitude!
\(\Omega h^2 \text{ vs direct detection} \)

Tension between annihilation cross section and direct detection bounds

\[\sigma_{\text{ann.}} \sim 0.1 \text{ pb} \]

\[\sigma_{\text{SI}} \sim 7.0 \times 10^{-9} \text{ pb} \]

50 GeV WIMP

Typical strategy: pick parameters such that \(\sigma_{\text{SI}} \) is suppressed, then use tricks to enhance \(\sigma_{\text{ann.}} \).
\(\Omega h^2 \) vs direct detection

![Diagram showing the relationship between \(\Omega h^2 \) and direct detection.]
Motivation I: a natural WIMP

Typical MSSM WIMP: σ_{SI} too large

Want to naturally suppress direct detection while maintaining ‘miracle’ of successful abundance.

If LSP is part of a Goldstone multiplet, $(s + ia, \chi)$, additional suppression from derivative coupling.

- Like a weak scale axino, but unrelated to CP
- Like singlino DM, but global symmetry broken in SUSY limit
Motivation I: a natural WIMP

Annihilation: \(p \)-wave decay to Goldstones

\[
\frac{1}{f} \bar{\chi} \gamma^\mu \gamma^5 \chi \partial_\mu a \quad \Rightarrow \quad \langle \sigma v \rangle \approx \left(\frac{m_\chi}{f^2} \right)^2 \left(\frac{T_f}{m_\chi} \right) \approx 1 \text{ pb}
\]

Direct detection: CP-even Goldstone mixing with Higgs

\[
\frac{m_\chi v}{f^2} \sim 0.01 \quad \Rightarrow \quad \sigma_{SI} = \left(\frac{m_\chi v}{f^2} \right)^2 \sigma_{SI}^{MSSM} \approx \mathcal{O}(10^{-45} \text{ cm}^2)
\]
Motivation II: Buried Higgs

Idea: Light Higgs buried in QCD background

Global symmetry at $f \sim 500$ GeV with coupling $\frac{1}{f^2} h^2 (\partial a)^2$

Can we bury the Higgs through a decays, but dig up dark matter in χ?

0906.3026, 1012.1316, 1012.1347
The Goldstone Supermultiplet

\[A = \frac{1}{\sqrt{2}} \left(s + i a \right) + \sqrt{2} \theta \chi + \theta^2 F \]

Carries the low-energy degrees of freedom of the UV fields,

\[\Phi_i = f_i e^{q_i A/f} \quad f^2 = \sum_i q_i^2 f_i^2 \]

SUSY \Rightarrow \text{explicit } s \text{ mass, } m_\chi \approx q_i \langle F_i \rangle / f, \text{ a massless}
Interactions: Overview

- Coupling to a
- Coupling to H
- Coupling to g, γ

Kähler potential

- NLΣM Kähler
- MSSM
- Explicit breaking
- Superpotential
- Anomaly
- Mixing

- Scalar
- Kinetic
Interactions: NLΣM Kähler potential

Non-linear realization of the global U(1)
⇒ Kähler interactions of the Goldstone multiplet:

\[
\frac{\partial^2 K}{\partial A \partial A^\dagger} = 1 + b_1 \frac{q}{f} (A + A^\dagger) + \cdots
\]

\[
b_1 = \frac{1}{q f^2} \sum_i q_i^3 f_i^2
\]

Note \(K = K(s) \), manifest shift-invariance.

\[
\mathcal{L} = \left(1 + b_1 \frac{\sqrt{2}}{f} s + \cdots \right) \left(\frac{1}{2} (\partial s)^2 + \frac{1}{2} (\partial a)^2 + \frac{i}{2} \bar{\chi} \gamma^\mu \partial_\mu \chi \right) + \frac{1}{2 \sqrt{2}} \left(b_1 \frac{1}{f} + b_2 \frac{\sqrt{2}}{f^2} s + \cdots \right) \left(\bar{\chi} \gamma^\mu \gamma^5 \chi \right) \partial_\mu a + \cdots
\]

\(b_1 \) controls the annihilation cross section.
Interactions: scalar mixing

MSSM fields are uncharged under the global U(1), but may mix with the Goldstone multiplet through higher-order terms in K:

$$K = \frac{1}{f} \left(A + A^\dagger \right) \left(c_1 H_u H_d + \cdots \right) + \frac{1}{2f^2} \left(A + A^\dagger \right)^2 \left(c_2 H_u H_d + \cdots \right)$$

The new scalar interactions take the form

$$\mathcal{L} \supset \left[\frac{1}{2} (\partial a)^2 + \frac{1}{2} \bar{\chi} \Slash{D} \chi \right] \left(1 + \frac{v}{f} c_h h + \cdots \right)$$

c$_h$ depends on c$_i$ and the Higgs mixing angles.
Interactions: kinetic mixing

The higher order terms in K also induce kinetic $\tilde{H} - \chi$ mixing.

\[\mathcal{L} \supset i \epsilon_u \bar{\chi} \gamma^\mu \partial_\mu \tilde{H}^0_u + i \epsilon_d \bar{\chi} \gamma^\mu \partial_\mu \tilde{H}^0_d + \text{h.c.} \]

where $\epsilon \sim v/f$. For large μ, χ has a small \tilde{H} of order $v m_\chi / f \mu$.

Mixing with other MSSM fields is suppressed. Assuming MFV,

\[K = \frac{1}{f} \left(A + A^\dagger \right) \left(\frac{Y_u}{M_u} \bar{Q} H_u U + \cdots \right) \]

where the scales $M_{u,d,\ell}$ are unrelated to f or v and can be large and dependent on the UV completion.
Interactions: anomaly

Fermions Ψ charged under global $U(1)$ and Standard Model

$$\mathcal{L}_{an} \ni \frac{c_{an}}{f \sqrt{2}} \left(a G_{\mu\nu}^a \tilde{G}_{\mu\nu}^a + 2 \bar{\chi} G_{\mu\nu}^a \sigma^{\mu\nu} \gamma^5 \lambda^a \right)$$

$$c_{an} = \frac{\alpha}{8\pi} \sqrt{2} \sum_{i}^{N_{\psi}} \left(\frac{y_i f}{m_{\psi_i}} \right) = \frac{\alpha}{8\pi} q_{\Psi} N_{\Psi}$$

Assumed: degenerate m_{ψ} and $y = m_{\psi} q_{\Psi} / f \sqrt{2}$

Integrating out λ^a generates χ couplings to gluons

$$\mathcal{L} \ni - \frac{c_{an}^2}{2M_{\lambda} f^2} \bar{\chi} \chi G G - i \frac{c_{an}^2}{2M_{\lambda} f^2} \bar{\chi} \gamma^5 \chi G \tilde{G}$$

These contribute to collider and astro operators.
Interactions: explicit breaking

Include explicit $\mathcal{U}(1)$ spurion $R_\alpha = \lambda_\alpha f$ with $\lambda_\alpha \ll 1$

$$W_{\mathcal{U}(1)} = f^2 \sum_{\alpha} R_{-\alpha} e^{aA/f}$$

Perserve SUSY \Rightarrow at least two spurions with opposite charge.

This generates $m_a = m_\chi = m_s$ and couplings

$$\mathcal{L} \supset -\frac{m_a}{2\sqrt{2}f} (\alpha + \beta) \left[i a \bar{\chi} \gamma^5 \chi + \frac{m_a}{8f^2} (\alpha^2 + \alpha \beta + \beta^2) a^2 \bar{\chi} \chi \right]$$

By integration by parts this is equivalent to a shift in the b_1 coefficient from the Kähler potential
Main parameters

coupling to a

coupling to H

coupling to g, γ

Kähler potential

Goldstone Fermion m_χ; SSB at f

Superpotential

MSSM

collider, astro

Mixing

scalar

kinetic

Anomaly

c_{an}

NLΣM Kähler

b_1

σ_{ann}

m_a

Explicit breaking

δ

Goldstone Fermion Dark Matter

Flip Tanedo pt267@cornell.edu
Parameter space scan

Abundance: \(\langle \sigma v \rangle \approx b_1^4 \frac{T_f}{8\pi} \frac{m_\chi^2}{m_\chi f^4} \approx 1 \text{ pb} \)

\(p \)-wave: \(b_1 \gtrsim 1 \), all other parameters take natural values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Scan Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>Global symmetry breaking scale</td>
<td>500 GeV – 1.2 TeV</td>
</tr>
<tr>
<td>(m_\chi)</td>
<td>Goldstone fermion mass (SUSY)</td>
<td>50 – 150 GeV</td>
</tr>
<tr>
<td>(m_a)</td>
<td>Goldstone boson mass</td>
<td>8 GeV – (f/10)</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(\chi \chi a) coupling</td>
<td>[0, 2]</td>
</tr>
<tr>
<td>(c_{an})</td>
<td>Anomaly coefficient</td>
<td>0.06</td>
</tr>
<tr>
<td>(c_h)</td>
<td>Higgs coupling</td>
<td>[−1, 1]</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Explicit breaking (ia\bar{\chi}\gamma^5\chi) coupling</td>
<td>3/2</td>
</tr>
</tbody>
</table>

\[\mathcal{L} \supset \left[\frac{1}{2} (\partial a)^2 + \frac{1}{2} \bar{\chi} \phi \chi \right] c_h \frac{v}{f} h + \frac{b_1}{2\sqrt{2}f} (\bar{\chi} \gamma^\mu \gamma^5 \chi) \partial_\mu a + \frac{c_{an}}{f\sqrt{2}} a G \tilde{G} + i\delta a \bar{\chi} \gamma^5 \chi \]
Contours of fixed Ω

$\Omega h^2 = 0.11$

Dominant contribution
Kähler, anomaly, $U(1)$

Subleading
Mixing with Higgs

Negligible
$\chi\chi \rightarrow s \rightarrow aa, \chi\chi \rightarrow hh$

Flip Tanedo pt267@cornell.edu

Goldstone Fermion Dark Matter
Direct Detection

Higgs exchange typically dominates by a factor of $O(10^3)$.

$$\sigma_{SI}^H \approx 3 \cdot 10^{-45} \text{ cm}^2 c_h^2 \left(\frac{115 \text{ GeV}}{m_h} \cdot \frac{700 \text{ GeV}}{f} \right)^4 \left(\frac{m_\chi}{100 \text{ GeV}} \cdot \frac{\mu_\chi}{\text{GeV}} \cdot \frac{\lambda_N}{0.5} \right)^2$$

Compare this to the MSSM Higgs with $\mathcal{L} = \frac{1}{2}cg\bar{\chi}\chi h$:

$$\sigma_{SI}^{\text{MSSM}} \sim \frac{c^2 g^2}{2\pi} \frac{\lambda_N^2 \mu^2 m_N^2}{m_h^2 v^2} \approx c^2 \times 10^{-42} \text{ cm}^2$$

Natural suppression: $(m_\chi v / f^2)^2$ due to Goldstone nature
Parameter space scan

Direct Detection

\[\sigma \quad [\text{cm}^2] \]

\[m_\chi \quad [\text{GeV}] \]

Ruled out

500 < f < 700 GeV
700 < f < 800 GeV
800 < f < 900 GeV
900 < f < 1000 GeV

XENON
Indirect detection & Colliders

* p spectrum: below PAMELA
 - (Einsasto DM Halo profile) \(1104.3572\)

* \(\gamma\)-ray line search: \(\mathcal{O}(10)\) smaller than bound
 - \(\chi\chi \rightarrow a \rightarrow \gamma\gamma\)

Diffuse \(\gamma\)-ray spectrum: \(\mathcal{O}(10)\) smaller than bound
 - \(\chi\chi \rightarrow a \rightarrow gg \rightarrow \pi's\)

* Photo-production from annihilation: \(\sigma 3x\) lower than bound
 - Low mass DM \(m_\chi \lesssim 60\) GeV, constrains \(bb\) decays

* ISR monojets at colliders: dim-7 operators too small

\[
\mathcal{L} \supset -\frac{c_{an}^2}{2M_\lambda f^2} \bar{\chi} \chi G \tilde{G} - \frac{i c_{an}^2}{2M_\lambda f^2} \bar{\chi} \gamma^5 \chi G \tilde{G}
\]
Non-standard Higgs decays

Hard to completely bury the Higgs. LEP: $\text{Br}(\text{SM}) \gtrsim 20\% \Rightarrow m_h \gtrsim 110 \text{ GeV}$

$f = 500 \text{ GeV}, m_a = 45 \text{ GeV}, m_\chi = 100 \text{ GeV}, c_h = 2$

![Graph showing Higgs branching ratio vs. Higgs mass](image-url)
Non-standard Higgs decays

Partially buried & invisible: Suppressed SM channels, MET, $\Gamma_{\text{tot}} < 1$

\[f = 400 \text{ GeV}, \ m_a = m_\chi = 60 \text{ GeV}, \ c_h = 2 \]

Higgs branching ratio vs. Higgs mass $m_h [\text{GeV}]$

- $b\bar{b}$
- aa
- $\chi\chi$
- ZZ^*
- WW^*
Conclusions

Executive summary: Goldstone Fermion dark matter

• SSB: global U(1) \Rightarrow Goldstone boson a and fermion χ
• χ is LSP and DM, a gives ‘buried’ Higgs channel

Simple extension of MSSM with natural WIMP dark matter

• Kähler $\chi\chi a$ interaction controls abundance
• Higgs mixing, anomaly controls direct detection
• Novel collider signature: partially buried/invisible Higgs

Further directions:

• p-wave Sommerfeld enhancement (can push m_a, m_χ to 10 GeV)
• Non-abelian generalization
Extra Slides
Examples of Linear Models

Simplest example:

$$W = yS \left(\bar{NN} - \mu^2 \right) + \underbrace{N\phi\phi}_{\text{anomaly}} + \underbrace{SH_uH_d}_{\text{mixing}} + \underbrace{W_{\text{explicit}}}_{\text{explicit } U(1)}$$

Example with $|b_1| \geq 1$:

$$W = \lambda XYZ - \mu^2 Z + \frac{\tilde{\lambda}}{2} Y^2 N - \bar{\mu} \bar{N} N$$

$q_Z = 0$, $q_N = -q_{\bar{N}} = -2q_Y = 2q_X$. Goldstone multiplet:

$$A = \sum_i \frac{q_i f_i \psi_i}{f} = \frac{q_Y}{f} \left(Yf_Y - Xf_X + 2\bar{N}F_{\bar{N}} \right)$$

$$b_1 = \frac{-f_X^2 + f_Y^2 + 8f_{\bar{N}}^2}{f_X^2 + f_Y^2 + 4f_{\bar{N}}^2}$$
Tamvakis-Wyler Theorem

Global symmetry: $W[\Phi_i] = W[e^{i\alpha q_i} \Phi_i]$ so that

$$0 = \frac{\partial W[e^{i\alpha q_i} \Phi_i]}{\partial \alpha} = \sum_j W_j q_j \Phi_j,$$

Taking a derivative $\partial / \partial \Phi_i$ gives:

$$0 = \left. \frac{\partial}{\partial \Phi_i} \left(\sum_j W_j q_j \Phi_j \right) \right|_{\langle \Phi \rangle} = \sum_j W_{ij} q_j f_j + W_i q_i$$
Expand Kähler potential, drop total derivatives, integrate out F:

$$\mathcal{L} = K'' \left(\frac{i}{2} \partial \chi \sigma \bar{\chi} + |\partial \phi|^2 \right)$$

$$+ \frac{K'''}{4} i \chi \sigma \bar{\chi} \partial (\phi - \phi^*)$$

$$+ \frac{1}{4} \left(K''''' - \left(\frac{K'''}{K''} \right)^2 \right) \chi^2 \bar{\chi}^2$$

These terms can be understood in terms of geometric properties of the vacuum manifold, see e.g. hep-th/0101055.
We assume that soft SUSY terms that also explicitly break the global U(1) are negligible. Neglect D-term mixing with λ^a, then fermion mass matrix is W_{ij}. Tamvakis-Wyler:

$$\sum_j W_{ij} q_j f_j = -q_i W_i = -q_i F_i$$

so that $\chi = \sum_i q_i f_i \psi_i / f$ mass depends on how U(1)-charged F-terms in the presence of soft SUSY terms.

If W has an unbroken R symmetry, then $R[\chi] = -1$ which prohibits a Majorana mass. However, while soft scalar masses preserve R, A-terms are holomorphic and generally break R symmetries to contribute to m_χ.
SUSY Breaking and χ mass

The A-term contribution to m_χ is equivalent to F-term mixing between $U(1)$ charged fields and the SUSY spurion, X. This was recently emphasized in 1104.0692 as an irreducible $O(m_{3/2})$ contribution to the Goldstone fermion.

For concreteness, consider gravity mediation with $m_{\text{soft}} \sim F/M_{\text{Pl}}$.

$$K = \sum_i Z(X, X^\dagger) \Phi_i^\dagger \Phi_i$$

Analytically continue into superspace hep-ph/9706540

$$\Phi \rightarrow \Phi' \equiv Z^{1/2} \left(1 + \frac{\partial \ln Z}{\partial X} F \theta^2 \right) \Phi$$

Canonical normalization generates A-terms:

$$\Delta \mathcal{L}_{\text{soft}} = \left. \frac{\partial W}{\partial \Phi} \right|_{\Phi=\phi} Z^{-1/2} \left(-\frac{\partial \ln Z}{\partial \ln X} \frac{F}{M} \right)$$
\[\Delta \mathcal{L}_{\text{soft}} = \left. \frac{\partial W}{\partial \Phi} \right|_{\Phi = \phi} \ Z^{-1/2} \left(-\frac{\partial \ln Z}{\partial \ln X} \frac{F}{M} \right) \]

Completely incorporates \(F \)-term mixing of the form \(FF^\dagger \Phi_i \). The \(\chi \) mass is determined by the induced \(F_i \) obtained by minimizing

\[V = \left| \frac{\partial W}{\partial \phi_i} \right|^2 + A_i \frac{\partial W}{\partial \phi_i} \phi_i + \text{h.c.} + m_i^2 |\phi_i|^2 \]

Assuming \(A_i, m_i < f_i \), generic size is \(|F_i| \approx A_i f_i \) so that \(m_\chi \sim A_i q_i \). Often the \(A \)-terms are suppressed relative to other soft terms, so it’s reasonable to expect \(\chi \) to be the LSP.

Contributions from soft scalar masses are on the order of \(m_i^2/f_i \) which can easily be suppressed.
Direct Detection

Relevant couplings from EWSB and anomaly:

\[
\mathcal{L} \supset \frac{c_h v}{2f} \bar{\chi} \partial \phi \chi h - \frac{c_{an}^2}{2M_\lambda f^2} \bar{\chi} \chi GG - \frac{ic_{an}^2}{2M_\lambda f^2} \bar{\chi} \gamma^5 \chi G\tilde{G}
\]

Effective coupling to nucleons: \(\mathcal{L} = G_{nuc} \bar{N}N\bar{\chi}\chi \),

\[
G_{nuc} = c_h \frac{\lambda_N}{2\sqrt{2}} \left(\frac{m_\chi m_N}{m_h^2 f^2} \right) + \frac{4\pi c_{an}^2}{9\alpha_s} \frac{m_N}{M_\lambda f} \left(1 - \sum_{i=u,d,s} f_i^{(N)} \right)
\]
Direct detection: nucleon matrix elements

Nucleon matrix elements can be parameterized via

\[m_i \langle N | \bar{q}_i q_i | N \rangle = f_i^{(N)} m_N \]

The heavy quark contribution via gluons can be calculated by the conformal anomaly, Phys. Lett. B78 433

\[f_j^{(N)} m_N = \frac{2}{27} \left(1 = \sum_{q=u,d,s} f_q^{(N)} \right) \quad j = c, b, t \]

Relevant quantity in Higgs exchange: \(c_q \), diagonalized Yukawa

\[\lambda_N = \sum_{q=u,d,s} c_q f_q^{(N)} + \frac{2}{27} \left(1 = \sum_{q=u,d,s} f_q^{(N)} \right) \sum_{q'=c,b,t} c_{q'} \]
Direct Detection

Some details:

\[G_{\chi N} = c_h \frac{\lambda_N}{2\sqrt{2}} \left(\frac{m_\chi m_N}{m_h^2 f^2} \right) + \frac{4\pi c_{an}}{9\alpha_s} \frac{m_N}{M_\lambda f} \left(1 - \sum_{i=u,d,s} f_i^{(N)} \right) \]

For reduced mass \(\mu_\chi = (m_\chi^{-1} + m_N^{-1})^{-1} \),

\[\sigma_{SI}^{Higgs} = \frac{4\mu_\chi^2}{A^2 \pi} \left[G_{\chi p} Z + G_{\chi n} (A - Z) \right] \]

\[\sigma_{SI}^{H} \approx 3 \cdot 10^{-45} \text{ cm}^2 c_h^2 \left(\frac{115 \text{ GeV}}{m_h} \right)^4 \left(\frac{700 \text{ GeV}}{f} \right)^4 \left(\frac{m_\chi}{100 \text{ GeV}} \right)^2 \left(\frac{\mu_\chi}{1 \text{ GeV}} \right)^2 \left(\frac{\lambda_N}{0.5} \right)^2 \]

\[\sigma_{SI}^{glue} \approx 2 \cdot 10^{-48} \text{ cm}^2 \left(\frac{700 \text{ GeV}}{M_\lambda} \right)^2 \left(\frac{700 \text{ GeV}}{f} \right)^4 \left(\frac{N_\psi}{5} \right)^4 \left(\frac{q_\psi}{2} \right)^4 \left(\frac{\mu}{1 \text{ GeV}} \right)^2 \]

using \(c_{an} = \alpha_s q_\psi N_\psi / 8\pi \)
Why are the $\chi\chi \to aa$ annihilations p-wave?

If the initial state is a particle-antiparticle pair with zero total angular momentum and the final state is CP even, then the process must vanish when $v = 0$.

Under CP a particle/antiparticle pair picks up a phase $(-)^{L+1}$. When $v = 0$ momenta are invariant and thus the initial state gets an overall minus sign. Since final state is CP even, the amplitude must vanish in this limit. For Dirac particles P is sufficient, but for Majorana particles CP is the well-defined operation.

This is why $\chi\chi \to G\tilde{G}$ is s-wave while $\chi\chi \to aa$ is p-wave.
Indirect detection: $\bar{\rho}$ flux vs. PAMELA

$f = 700$ GeV, $Q_\psi = 2$, $\delta = \frac{3}{2}$, $N_\psi = 5$

Dotted: $m_\chi = 150$ GeV, $b_1 = 1$

Solid: $m_\chi = 50$ GeV, $b_1 = 3$

Using Einasto DM Halo profile in 1012.4515, 1009.0224
Indirect detection: Fermi-LAT

γ-ray line search: 30 – 200 GeV
- Upper bound $\langle \sigma v \rangle_{\gamma\gamma} < 2.5 \times 10^{-27} \, \text{cm}^3/\text{s}$
- $\chi\chi \rightarrow a \rightarrow \gamma\gamma$ via anomaly
- For SU(5) fundamentals, $\langle \sigma v \rangle_{\gamma\gamma} \sim 2 \times 10^{-3} \langle \sigma v \rangle_{gg}$
- $\mathcal{O}(10)$ smaller than bound even for extreme parameters

Diffuse γ-ray spectrum: 20 – 100 GeV
- Bounds $\chi\chi$ to charged particles, π^0s
- $\chi\chi \rightarrow a \rightarrow gg$ via anomaly
- $\mathcal{O}(10)$ smaller than bound

Photo-production from DM annihilation: spheroidal galaxies
- Low mass DM $m_\chi \lesssim 60$ GeV, constrains bb decays
- GF: annihilation σ always at least a factor of 3 lower

Collider production

Collider production through gluons. **ISR monojet** signature is sensitive to $\sigma_{SI}^N \sim 10^{-46}$ cm2 at the LHC with 100 fb$^{-1}$.

The dim-7 anomaly operators are too small:

$$\mathcal{L} \supset - \frac{c_{\text{an}}^2}{2M_\lambda f^2} \bar{\chi}\chi GG - \frac{ic_{\text{an}}^2}{2M_\lambda f^2} \bar{\chi}\gamma^5 \chi G \tilde{G}$$

$gg \to a^* \to \chi\chi$ may be within 5σ reach with 100 fb$^{-1}$

1005.1286, 1005.3797, 1008.1783, 1103.0240, 1108.1196

Cascade decays: LOSP $\to \chi$ through

- $\bar{\chi}G\lambda$ anomaly
- $\chi - \bar{H}$ kinetic mixing

Decays typically prompt, a reconstruction is difficult for light masses. Heavy fermions Ψ in anomaly may appear as “fourth generation” quarks
Nuclear matrix element and matching

The nucleon matrix element at vanishing momentum transfer:

\[M_N = \langle \Theta_{\mu}^{\mu} \rangle = \langle N | \sum_{i=u,d,s} m_i \bar{q}_i q_i + \frac{\beta(\alpha)}{4\alpha} G^a_{\alpha\beta} G^a_{\alpha\beta} | N \rangle \]

\[\beta = -\frac{9\alpha^2}{2\pi} + \cdots \] contains only the light quark contribution, \(M_N \) is the nucleon mass. The \(GG \) matches onto the nucleon operator \(\bar{N}N \).

\[M_N f_{i=u,d,s}^{(N)} = \langle N | m_i \bar{q}_i q_i | N \rangle \quad f_g^{(N)} = 1 - \sum_{i=u,d,s} f_i^{(N)} \]
Nuclear matrix element and matching

\[
\frac{\beta(\alpha)}{4\alpha} G^a_{\alpha/\beta} G^a_{\alpha/\beta} \rightarrow M_N \left(1 - \sum_{i=u,d,s} f^{(N)}_i \right) \bar{N}N
\]

Where \(f^{(N)}_{u,d} \ll f^{(N)}_s \approx 0.25 \). For a detailed discussion, see 0801.3656 and 0803.2360.
Image Credits and Colophon

- ‘Zombie arm’ illustration from http://plantsvszombies.wikia.com
- Beamer theme Flip, available online http://www.lepp.cornell.edu/~pt267/docs.html
- All other images were made by Flip using TikZ and Illustrator